Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression

Diurnal rhythm of cyclic 3-hydroxymelatonin

  • Geun-Hee Choi Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
  • Kyoungwhan Back Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
Keywords: cyclic 3-hydroxymelatonin; diurnal rhythm; M3H; melatonin; RNAi; tiller number; transgenic rice

Abstract

Cyclic 3-hydroxymelatonin (c3OHM) is a major metabolite of melatonin in plants produced by the enzymatic action of melatonin 3-hydroxylase (M3H). However, the function of c3OHM in plants is unclear. Here, we report that M3H mRNA and c3OHM levels display diurnal rhythms with peaks at night, but not in a circadian manner. This diurnal rhythmicity occurred predominantly in the late vegetative growth stage (8 weeks after germination), but was absent in the early vegetative growth stage. Transgenic rice plants overexpressing or underexpressing M3H were generated to investigate the physiological roles of diurnal production of c3OHM. The M3H-overexpression (OE) line exhibited higher M3H activity and c3OHM production than the wild-type, and vice versa for the M3H‑underexpression rice (RNAi). The seedling growth phenotype of the OE and RNAi lines was comparable to that of the wild-type but exhibited pleiotropic phenotypic defects at the reproductive stage, such as decreased height, biomass, grain yield, and fertility. Of note, the OE rice showed significantly increased numbers of secondary tillers and panicles. The increase in tiller number of the OE line was linked to increased expression of tiller-related genes, such as MOC1 and TB1, suggesting that the diurnal rhythm of c3OHM production is associated with the tiller number, a pivotal agronomic trait governing grain yield in rice.    

References

1. Jackson WT (1969) Regulation of mitosis. II. Interaction of isopropyl N-phenylcarbamate and melatonin. J. Cell Sci. 5: 745-755.
2. Kolář J, Johnson CH, Macháčková I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol. Plant. 118: 605-612. doi: 10.1034/j.1399-3054.2003.00114.x.
3. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 35: 627–634.
4. Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 18: 28–31.
5. Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front. Plant Sci. 7: 718. doi: 10.3389/fpls.2016.00718.
6. Hernández IG, Gomez FJV, Cerutti S, Arana MV, Silva MF (2015) Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentration and preserves seed viability at high concentrations. Plant Physiol. Biochem. 94: 191-196. doi: 10.1016/j.plaphy.2015.06.011.
7. Chen Z, Gu Q, Yu X, Huang L, Xu S, Wang R, Shen W, Shen W (2018) Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann. Bot. 121: 1127-1136. doi: 10.1093/aob/mcx207.
8. Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front. Plant Sci. 8: 134. doi: 10.3389/fpls.2017.00134.
9. Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J. Plant Phsyiol. 166: 324-328. doi: 10.1016/j.jplph.2008.06.002.
10. Arnao MB, Hernández-Ruiz J (2017) Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiol. Plant. 39: 127. doi: 10.1007/s11738-017-2428-3.
11. Hwang OJ, Back K (2018) Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in plants. J. Pineal Res. 65: e12495. doi: 10.1111/jpi.12495.
12. Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+-ATPase activity and K+/Na+ homeostasis in sweet potato. Front. Plant Sci. 9: 256. doi: 10.3389/fpls.2018.00256.
13. Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D, Li Q, Han Z, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci. Rep. 7: 41236. doi: 10.1038/srep41236.
14. Liang D, Shen Y, Ni Z, Wang Q, Lei Z, Xu N, Deng Q, Lin L, Wang J, Lv X, Xia H (2018) Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front. Plant Sci. 9: 426. doi: 10.3389/fpls.2018.00426.
15. Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YD (2016) A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal Res. 61: 138-153. doi: 10.1111/jpi.12315.
16. Li H, Chang J, Zheng J, Dong Y, Liu Q, Yang X, Wei C, Zhang Y, Ma J, Zhang X (2017) Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci. Rep. 7: 40858. doi: 10.1038/srep40858.
17. Zhao H, Ye L, Wang Y, Zhou X, Yang J, Wang J, Cao K, Zou Z (2016) Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Front. Plant Sci. 7: 1814. doi: 10.3389/fpls.2016.01814.
18. Shi H, Wei Y, He C (2016) Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. Plant Physiol. Biochem. 100: 150-153. doi: 10.1016/j.plaphy.2016.01.018.
19. Qian Y, Tan DX, Reiter RJ, Shi H (2015) Comparative metabolomics analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci. Rep. 4: 15815. doi: 10.1038/srep15815.
20. Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J. Pineal Res. 62: e12392. doi: 10.1111/jpi.12392.
21. Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J. Pineal Res. 62: e12387. doi: 10.1111/jpi.12387.
22. Lee HY, Back K (2018) Melatonin plays a pivotal role in conferring tolerance against endoplasmic reticulum stress via mitogen-activated protein kinases and bZIP60 in Arabidopsis thaliana. Melatonin Res. 1: 93-107. doi: 10.32974/mr11250006.
23. Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J. Exp. Bot. 69: 963-974. doi: 10.1093/jxb/erx473.24.
24. Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int. J. Mol. Sci. 20: 1040. doi: org/10.3390/ijms20051040.
25. Ahammed GJ, Xu W, Liu A, Chen S (2018) COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 9: 998. doi: 10.3389/fpls.2018.00998.
26. Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol. Plant. 160: 396-409. doi: 10.1111/ppl.12581.
27. Chen Z, Xie Y, Gu Q, Zhao G, Zhang Y, Cui W, Xu S, Wang R, Shen W (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radic. Biol. Med. 108: 465-477. doi: 10.1016/j.freeradbiomed.2017.04.009.
28. Choi GH, Lee HY, Back K (2017) Chloroplast overexpression of rice caffeic acid O-methyltransferase increase melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J. Pineal Res. 63: e12412. doi: 10.1111/jpi.12412.
29. Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Xu S, Wang R, Shen W (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci. 261: 28-37. doi: 10.1016/j.plantsci.2017.05.001.
30. Byeon Y, Back K (2016) Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions. J. Pineal Res. 60: 348-359. doi: 10.1111/jpi.12317.
31. Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 61: 426-437. doi: 10.1111/jpi.12364.
32. Wei Y, Liu G, Chang Y, Lin D, Reiter RJ, He C, Shi H (2018) Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava. J. Pineal Res. 65: e12487. doi: 10.1111/jpi.12487.
33. Wei Y, Liu G, Bai Y, Xia F, He C, Shi H (2017) Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava. J. Exp. Bot. 68: 4997-5006. doi: 10.1093/jxb/erx305.
34. Byeon Y, Tan DX, Reiter RJ, Back K (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J. Pineal Res. 59: 448-454. doi: 10.1111/jpi.12274.
35. Galano A, Tan DX, Reiter RJ (2014) Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Adv. 4: 5220-5227.
36. Byeon Y, Back K (2015) Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J. Pineal Res. 58: 343-351. doi: 10.1111/jpi.12220.
37. Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J. Pineal Res. 61: 470-478. doi: 10.1111/jpi.12361.
38. Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol. 145: 1192-1200. doi: 10.1104/pp.107.111575.
39. Kikuchi S, et al. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376-379. doi: 10.1126/science.1081288.
40. Wang Z, Chen C, Xu Y, Jiang R, Han Y, Xu Z, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol. Biol. Rep. 22: 409-417. doi: 10.1007/BF02772683.
41. Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol. 41: 743–749. doi: 10.1093/pcp/41.6.743.
42. Park S, Lee DE, Jang H, Byeon Y, Kim YS, Back K (2013) Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J. Pineal Res. 54: 258-263. doi: 10.1111/j.1600-079X.2012.01029.x.
43. Pérez-González A, Galano A, Alvarez-Idaboy JR, Tan DX, Reiter RJ (2017) Radical-trapping and preventive antioxidant effects of 2-hydroxymelatoin and 4-hydroxymelatonin: contributions to the melatonin protection against oxidative stress. Biochem. Biophys. Acta 1861: 2206-2217. doi: 10.1016/j.bbagen.2017.06.016.
44. Sato Y, Antonio B, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2011) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39: D1141-D1148. doi: 10.1093/nar/gkq1085.
45. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113-123. doi: 10.1105/tpc.13.1.113.
46. Hussien A, Tavakol E, Horner DS, Munoz-Amatriain M, Muehlbauer GJ, Rossini L (2014) Genetics of tillering in rice and barley. Plant Genome 7: 1–20. doi: 10.3835/plantgenome2013.10.0032.
47. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, Vijayalaxmi, Shepherd AM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation: a biomarker of in vivo hydroxyl radical generation. Biochem. Biophys. Res. Commun. 253: 614-620. doi: 10.1006/bbrc.1998.9826.
48. López-Burillo S, Tan DX, Rodriguez-Gallego V, Manchester LC, Mayo JC, Sainz RM, Reiter RJ (2003) Melatonin and its derivative cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J. Pineal Res. 34: 178-184. doi: 10.1034/j.1600-079X.2003.00025.x.
49. Tan DX, Hardeland R, Manchester LC, Galano A, Reiter RJ (2014) Cyclic -3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem. 21: 1557-1565. doi: 10.2174/0929867321666131129113146.
50. Tan DX, Manchester LC, Mascio P, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J. 21: 1724–1729. doi: 10.1096/fj.06-7745com.
51. Hirata F, Hayaishi O, Tokuyama T, Seno S (1974) In vitro and in vivo formation of two new metabolites of melatonin. J. Biol. Chem. 249: 1311-1313.
52. Okazaki M, Higuchi K, Aouini A, Ezura H (2010) Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. J. Pineal Res. 49: 239-247. doi: 10.1111/j.1600-079X.2010.00788.x.
53. Ximenes VF, Silva SO, Rodrigues MR, Catalani LH, Maghzai GJ, Kettle AJ, Campa A (2005) Superoxide-dependent oxidation of melatonin by myeloperoxidase. J. Biol. Chem. 280: 38160-38169. doi: 10.1074/jbc.M506384200.
54. Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K (2015) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J. Pineal Res. 58: 470-478. doi: 10.1111/jpi.12232.
55. Lee HJ, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J. Pineal Res. 61: 303-316. doi: 10.1111/jpi.12347.
56. Lee HJ, Back K (2019) 2-Hydroxymelatonin confers tolerance against combined cold and drought stress in tobacco, tomato, and cucumber as a potent anti-stress compound in the evolution of land plants. Melatonin Res. 2: 36-47. doi: 10.32794/mr11250020.
57. Zhao Y, Tan TX, Lei Q, Wang CL, Li Q, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 55: 79-88. doi: 10.1111/jpi.12044.
58.Reiter RJ, Tan DX, Sharma R (2018). Historical perspective and evaluation of the mechanisms by which melatonin mediates seasonal reproduction in mammals. Melatonin Res. 1: 59-77. doi: 10.32794/mr11250004.
59. Kolář J, Macháčková I, Eder J, Prinsen E, Van Dongen W, Van Onckelen H, Illnerová H (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 44: 1407-1413.
60. Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front. Physiol. 5: 377. doi: 10.3389/fphys.2014.00377.
61. Reina M, Castañeda-Arriaga R, Perez-Gonzalez A, Guzman-Lopez EG, Tan DX, Reiter RJ, Galano A (2018) A computer-assisted systematic search for melatonin derivatives with high potential as antioxidants. Melatonin Res. 1: 27-58. doi: 10.32794/mr11250003.
62. Paul S, Naaz S, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D (2018) Melatonin chelates iron and binds directly with phenylhydrazine to provide protection against phenylhydrazine induced oxidative damage in red blood cells along with its antioxidant mechanisms: an in vitro study. Melatonin Res. 1: 1-20. doi: 10.32794/mr11250001.
63. Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol. Biol. 59: 75-84. doi: 10.1007/s11103-004-4038-x.
64. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422: 618-621. doi: 10.1038/nature01518.
65. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485-488. doi: 10.1038/386485a0.
66. Choi MS, Woo MO, Koh EB, Lee J, Ham TH, Seo HS, Koh HJ (2012) Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep. 31: 57-65. doi: 10.1007/s00299-011-1139-2.
67. Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J. Pineal Res. 56: 408-414. doi: 10.1111/jpi.12129.
68. Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci. 24: 38-48. doi: 10.1016/j.tplants.2018.10.010.
Published
2019-08-31
How to Cite
[1]
Choi, G.-H. and Back, K. 2019. Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression. Melatonin Research. 2, 3 (Aug. 2019), 120-138. DOI:https://doi.org/https://doi.org/10.32794/11250034.
Section
Research Articles