Efficacy of melatonin in non-intensive care unit patients with COVID-19 pneumonia and sleep dysregulation

Melatonin and COVID-19 pneumonia

  • Luis I. Brusco Faculty of Medicine, University of Buenos Aires, Argentina
  • Pablo Cruz Centro Gallego of Buenos Aires, Argentina
  • Alicia V Cangas Centro Gallego of Buenos Aires, Argentina
  • Carmen González Rojas Centro Gallego of Buenos Aires, Argentina
  • Daniel E Vigo Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires and Institute for Biomedical Research, Pontificia Universidad Católica Argentina and Argentine National Research Council (CONICET), Buenos Aires, Argentina
  • Daniel Pedro Cardinali Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
Keywords: Chronotherapy, COVID-19 pandemic, melatonin, pneumonia, respiratory distress, sleep

Abstract

The association of sleep disruption with a higher vulnerability to COVID-19 infection is a subject of major clinical importance. In patients with pneumonia associated with COVID-19 admitted to non-intensive care unit (NICU) several factors, like the disrupting influence of respiratory distress, medication, greater stress due to social isolation, and lack of appropriate exposure to environmental light can be instrumental to disrupt sleep/wake cycle. The therapeutic potential of melatonin to counteract the consequences of COVID-19 infection has been advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and immunomodulatory compound, melatonin could be unique in impairing the consequences of SARS-CoV-2 infection. Melatonin is also an effective chronobiotic agent to reverse the circadian disruption of social isolation and to control delirium in severely affected patients. Properly administered, melatonin may restore the optimal circadian pattern of the sleep-wake cycle and improve clinical condition in pneumonia associated with COVID-19 patients. The present review article discusses the importance of maintaining normal sleep and circadian rhythmicity in NICU patients and provides preliminary data suggesting the efficacy of melatonin (9 mg/day) to reduce length of stay of pneumonia patients associated with COVID-19 in NICU.


References

1. Maldonado JR, Kapinos G (2008) Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit. Care Clin. 24: 789–856. https://doi.org/10.1016/j.ccc.2008.06.004.
2. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. (2020) COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 250: https://doi.org/10.1016/j.lfs.2020.117583.
3. Kleszczyński K, Slominski AT, Steinbrink K, Reiter RJ (2020) Clinical trials for use of melatonin to fight against COVID-19 are urgently needed. Nutrients 12: https://doi.org/10.3390/nu12092561.
4. Cardinali DP, Brown GM, Pandi-Perumal SR. (2020) Can melatonin be a potential “silver bullet” in treating COVID-19 patients? Dis. (Basel, Switzerland) 8 (4): 44. doi: 10.3390/diseases8040044
5. Borbély AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 25: 131–143. https://doi.org/10.1111/jsr.12371.
6. Saper CB, Fuller PM (2017) Wake–sleep circuitry: an overview. Curr. Opin. Neurobiol. 44: 186–192. https://doi.org/10.1016/j.conb.2017.03.021.
7. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, et al. (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci. 17: 1217–1224. https://doi.org/10.1038/nn.3789.
8. Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, et al. (2017) Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat. Commun. 8 (1): 734. doi: 10.1038/s41467-017-00781-4.
9. Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, et al. (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545: 477–481. https://doi.org/10.1038/nature22350.
10. Kaur S, Saper CB (2019) Neural circuitry underlying waking up to hypercapnia. Front. Neurosci. 13: 401. doi: 10.3389/fnins.2019.00401.
11. Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A (2020) The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci. Adv. 6 (45): eabd0384. doi: 10.1126/sciadv.abd0384.
12. Frighetto L, Marra C, Bandali S, Wilbur K, Naumann T, Jewesson P. (2004) An assessment of quality of sleep and the use drugs with sedating properties in hospitalized adult patients. Health Qual Life Outcomes 2: 17. doi: 10.1186/1477-7525-2-17.
13. Tamrat R, Huynh-Le MP, Goyal M (2014) Non-pharmacologic interventions to improve the sleep of hospitalized patients: A systematic review. J. Gen. Intern. Med. 29: 788–795. https://doi.org/10.1007/s11606-013-2640-9.
14. Southwell M, Wistow G (1995) Sleep in hospitals at night: are patients’ needs being met? J. Adv. Nurs 21: 1101–1109. https://doi.org/10.1046/j.1365-2648.1995.21061101.x.
15. Gay PC (2010) Sleep and sleep-disordered breathing in the hospitalized patient. Respir. Care 55: 1240–1254.
16. Fontana CJ, Pittiglio LI. (2010) Sleep deprivation among critical care patients. Crit. Care Nurs Q 33: 75–81. https://doi.org/10.1097/CNQ.0b013e3181c8e030.
17. Boyko Y, Ørding H, Jennum P (2012) Sleep disturbances in critically ill patients in ICU: How much do we know? Acta Anaesthesiol. Scand. 56: 950–958. https://doi.org/10.1111/j.1399-6576.2012.02672.x.
18. Kamdar BB, Needham DM, Collop NA (2012) Sleep deprivation in critical illness: Its role in physical and psychological recovery. J. Intensive Care Med. 27: 97–111. https://doi.org/10.1177/0885066610394322.
19. Cooke M, Ritmala-Castrén M, Dwan T, Mitchell M (2020) Effectiveness of complementary and alternative medicine interventions for sleep quality in adult intensive care patients: A systematic review. Int. J. Nurs Stud. 107: 103582. doi: 10.1016/j.ijnurstu.2020.103582.
20. Pisani MA, D’Ambrosio C (2020) Sleep and delirium in adults who are critically Ill: A Contemporary Review. Chest 157: 977–984. https://doi.org/10.1016/j.chest.2019.12.003.
21. Bertsche T, Pfaff J, Schiller P, Kaltschmidt J, Pruszydlo MG, Stremmel W, et al. (2010) Prevention of adverse drug reactions in intensive care patients by personal intervention based on an electronic clinical decision support system. Intensive Care Med. 36: 665–672. https://doi.org/10.1007/s00134-010-1778-8.
22. Olofsson K, Alling C, Lundberg D, Malmros C (2004) Abolished circadian rhythm of melatonin secretion in sedated and artificially ventilated intensive care patients. Acta Anaesthesiol. Scand. 48: 679–84. https://doi.org/10.1111/j.0001-5172.2004.00401.x.
23. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77: 683. https://doi.org/10.1001/jamaneurol.2020.1127.
24. Salluh JIF, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. (2015) Outcome of delirium in critically ill patients: Systematic review and meta-analysis. BMJ 350: 1–10. https://doi.org/10.1136/bmj.h2538.
25. Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of circadian disruption on cardiovascular function and disease (2019) Trends Endocrinol. Metab. 30: 767–779. https://doi.org/10.1016/j.tem.2019.07.008.
26. Grandner MA (2020) Sleep, health, and society. Sleep Med. Clin. 15: 319–340. https://doi.org/10.1016/j.jsmc.2020.02.017.
27. Brownlow JA, Miller KE, Gehrman PR (2020) Insomnia and cognitive performance. Sleep Med. Clin. 15: 71–76. https://doi.org/10.1016/j.jsmc.2019.10.002.
28. Ferini-Strambi L, Galbiati A, Casoni F, Salsone .(2020) Therapy for insomnia and circadian rhythm disorder in Alzheimer disease. Curr. Treat. Options Neurol. 22 (2): 4. doi: 10.1007/s11940-020-0612-z.
29. Shilts J, Chen G, Hughey JJ (2018) Evidence for widespread dysregulation of circadian clock progression in human cancer. PeerJ 6: e4327. doi: 10.7717/peerj.4327.
30. Daniel LC, van Litsenburg RRL, Rogers VE, Zhou ES, Ellis SJ, Wakefield CE, et al. (2020) A call to action for expanded sleep research in pediatric oncology: A position paper on behalf of the International Psycho-Oncology Society Pediatrics Special Interest Group. Psychooncology 29: 465–474. https://doi.org/10.1002/pon.5242.
31. Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, et al. (2020) Perfect timing: Circadian rhythms, sleep, and immunity — An NIH workshop summary. JCI Insight 5 (1): e131487. doi: 10.1172/jci.insight.131487.
32. Emens JS, Eastman CI (2017) Diagnosis and treatment of non-24-h sleep–wake disorder in the blind. Drugs 77: 637–650. https://doi.org/10.1007/s40265-017-0707-3.
33. Gobbi G, Comai S (2019) Sleep well. Untangling the role of melatonin MT1 and MT2 receptors in sleep. J. Pineal Res. 66: https://doi.org/10.1111/jpi.12544.
34. Ibrahim MG, Bellomo R, Hart GK, Norman T, Goldsmith D, Bates S, et al. (2006) A double-blind placebo-controlled randomised pilot study of nocturnal melatonin in tracheostomised patients. Crit. Care Resusc. 8: 187–191.
35. Bourne RS, Mills GH, Minelli C (2008) Melatonin therapy to improve nocturnal sleep in critically ill patients: Encouraging results from a small randomised controlled trial. Crit. Care 12 (2): R52. doi: 10.1186/cc6871.
36. Foreman B, Westwood AJ, Claassen J, Bazil CW (2015) Sleep in the neurological intensive care unit: Feasibility of quantifying sleep after melatonin supplementation with environmental light and noise reduction. J. Clin. Neurophysiol. 32: 66–74. https://doi.org/10.1097/WNP.0000000000000110.
37. Bellapart J, Boots R (2012) Potential use of melatonin in sleep and delirium in the critically ill. Br. J. Anaesth. 108: 572–580. https://doi.org/10.1093/bja/aes035.
38. Soltani F, Salari A, Javaherforooshzadeh F, Nassajjian N, Kalantari F (2020) The effect of melatonin on reduction in the need for sedative agents and duration of mechanical ventilation in traumatic intracranial hemorrhage patients: a randomized controlled trial. Eur. J. Trauma Emerg. Surg. 1-7. doi: 10.1007/s00068-020-01449-3
39. Mistraletti G, Umbrello M, Miori S, Taverna M, Cerri B, Mantovani E, et al. (2015) Melatonin reduces the need for sedation in ICU patients: a randomized controlled trial. Minerva Anestesiol. 81: 1298–1310.
40. Pévet P, Klosen P, Felder-Schmittbuhl MP (2017) The hormone melatonin: Animal studies. Best Pract. Res. Clin. Endocrinol. Metab. 31: 547–559. https://doi.org/10.1016/j.beem.2017.10.010.
41. Dawson D, Armstrong SM (1996) Chronobiotics - Drugs that shift rhythms. Pharmacol. Ther. 69: 15–36. https://doi.org/10.1016/0163-7258(95)02020-9.
42. Kandalepas PC, Mitchell JW, Gillette MUG (2016) Melatonin signal transduction pathways require E-Box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. PLoS One 11 (6): e0157824. doi: 10.1371/journal.pone.0157824.
43. Arendt J (2019) Melatonin: countering chaotic time cues. Front. Endocrinol. (Lausanne) 10: 391. doi: 10.3389/fendo.2019.00391.
44. Clarke IJ, Caraty A (2013) Kisspeptin and seasonality of reproduction. Adv. Exp. Med. Biol. 784: 411–430. https://doi.org/10.1007/978-1-4614-6199-9_19.
45. Tan DX, Xu B, Zhou X, Reiter RJ (2018) Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules 23 (2): 301. doi: 10.3390/molecules23020301
46. Skene DJ, Arendt J (2017) Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med. 8: 651–655. https://doi.org/10.1016/j.sleep.2006.11.013.
47. Lewy A (2010) Clinical implications of the melatonin phase response curve. J. Clin. Endocrinol. Metab. 95: 3158–3160. https://doi.org/10.1210/jc.2010-1031.
48. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin-A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93 (3): 350-384. doi: 10.1016/j.pneurobio.2010.12.004
49. Cardinali D (2019) Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection? Melatonin Res. 2: 106–132. https://doi.org/10.32794/mr11250025.
50. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 62 (3): 343-380. doi: 10.1124/pr.110.002832.
51. Cecon E, Oishi A, Jockers R (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 175: 3263–3280. https://doi.org/10.1111/bph.13950.
52. Cardinali DP, Lynch HJ, Wurtman RJ (1972) Binding of melatonin to human and rat plasma proteins. Endocrinology 91: 1213–1218. https://doi.org/10.1210/endo-91-5-1213.
53. Claustrat B, Leston J (2015) Melatonin: Physiological effects in humans. Neurochirurgie 61: 77–84. https://doi.org/10.1016/j.neuchi.2015.03.002.
54. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, et al. (2014) Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol Life Sci. 71: 2997–3025. https://doi.org/10.1007/s00018-014-1579-2.
55. Tan D-X, Reiter R (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2: 44–66. https://doi.org/10.32794/mr11250011.
56. Arendt J (2018) Approaches to the pharmacological management of jet lag. Drugs 78: 1419–1431. https://doi.org/10.1007/s40265-018-0973-8.
57. Burgess HJ, Emens JS (2018) Drugs used in circadian sleep-wake rhythm disturbances. Sleep Med. Clin. 13: 231–241. https://doi.org/10.1016/j.jsmc.2018.02.006.
58. Gobbi G, Comai S (2019) Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front. Endocrinol. (Lausanne) 10: 87. doi: 10.3389/fendo.2019.00087
59. Ferracioli-Oda E, Qawasmi A, Bloch MH (2013) Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One 8 (5): e63773. doi: 10.1371/journal.pone.0063773.
60. Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL (2017) Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 34: 10–22. https://doi.org/10.1016/j.smrv.2016.06.005.
61. Li T, Jiang S, Han M, Yang Z, Lv J, Deng C, et al. (2019) Exogenous melatonin as a treatment for secondary sleep disorders: A systematic review and meta-analysis. Front Neuroendocrinol. 52: 22–28. https://doi.org/10.1016/j.yfrne.2018.06.004.
62. Wilson SJ, Nutt DJ, Alford C, Argyropoulos S V., Baldwin DS, Bateson AN, et al. (2010) British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J. Psychopharmacol. 24: 1577–1600. https://doi.org/10.1177/0269881110379307.
63. Geoffroy PA, Micoulaud Franchi JA, Lopez R, Schroder CM (2019) The use of melatonin in adult psychiatric disorders: Expert recommendations by the French Institute of Medical Research on Sleep (SFRMS). Encephale 45: 413–423. https://doi.org/10.1016/j.encep.2019.04.068.
64. Palagini L, Manni R, Aguglia E, Amore M, Brugnoli R, Girardi P, et al. (2020) Expert opinions and consensus recommendations for the evaluation and management of insomnia in clinical practice: joint statements of five Italian scientific societies. Front. Psychiatry 11: 558. https://doi.org/10.3389/fpsyt.2020.00558.
65. Vecchierini MF, Kilic-Huck U, Quera-Salva MA (2020) Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev. Neurol. (Paris) S0035-3787 (20): 30656-1. doi: 10.1016/j.neurol.2020.06.009.
66. Riemersma-van Der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJG, Van Someren EJW (2008) Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: A randomized controlled trial. JAMA 299: 2642–2655. https://doi.org/10.1001/jama.299.22.2642.
67. Fainstein I, Bonetto AJ, Brusco LI, Cardinali DP (1997) Effects of melatonin in elderly patients with sleep disturbance: A pilot study. Curr. Ther. Res. Clin. Exp. 58: 990-1000. https://doi.org/10.1016/S0011-393X(97)80066-5.
68. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012) Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener Dis. 1 (3): 280-291.
69. Hampshire A, Trender W, Chamberlain SR, Jolly A, Grant JE, Patrick F, et al. (2020) Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N=84,285 online study. MedRxiv 2020: 10.20.20215863. https://doi.org/10.1101/2020.10.20.20215863.
70. Raj V, Opie M, Arnold AC (2018) Cognitive and psychological issues in postural tachycardia syndrome. Auton. Neurosci. Basic. Clin. 215: 46–55. https://doi.org/10.1016/j.autneu.2018.03.004.
71. Wells R, Paterson F, Bacchi S, Page A, Baumert M, Lau DH (2020) Brain fog in postural tachycardia syndrome: An objective cerebral blood flow and neurocognitive analysis. J. Arrhythmia 36: 549–552. https://doi.org/10.1002/joa3.12325.
72. Cardinali DP (2019) Melatonin: Clinical perspectives in neurodegeneration. Front. Endocrinol. (Lausanne) 10: 480. https://doi.org/10.3389/fendo.2019.00480.
73. Acuña-Castroviejo D, Escames G, Figueira JC, de la Oliva P, Borobia AM, Acuña-Fernández C (2020) Clinical trial to test the efficacy of melatonin in COVID-19. J. Pineal Res. 69 (3):e12683. doi: 10.1111/jpi.12683.
74. Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, Valls R, et al. (2020) In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS One 15 (10): e0240149. doi: 10.1371/journal.pone.0240149.
75. Cardinali DP. High doses of melatonin as a potential therapeutic tool for the neurologic sequels of COVID-19 infection (2020) Melatonin Res. 3: 311–317. https://doi.org/10.32794/mr11250064.
76. Simko F, Hrenak J, Dominguez-Rodriguez A, Reiter RJ (2020) Melatonin as a putative protection against myocardial injury in COVID-19 infection. Expert Rev. Clin. Pharmacol. 13 (9): 921-924. doi: 10.1080/17512433.2020.1814141.
77. Reiter RJ, Sharma R, Ma Q, Dominquez-Rodriguez A, Marik PE, Abreu-Gonzalez P (2020) Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: a mechanistic analysis. Med. Drug Discov. 6: 100044. https://doi.org/10.1016/j.medidd.2020.100044.
78. Pandi-Perumal SR, Cardinali DP, Reiter RJ, Brown GM (2020) Low melatonin as a contributor to SARS-CoV-2 disease. Melatonin Res. 3: 558–76. https://doi.org/10.32794/mr11250079.
79. Ueland T, Holter JC, Holten AR, Müller KE, Lind A, Bekken GK, et al. (2020) Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure: MMP-9 and respiratory failure in COVID-19. J. Infect. 81: e41–e43. https://doi.org/10.1016/j.jinf.2020.06.061.
80. Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N (2020) Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci. 257:118096. doi: 10.1016/j.lfs.2020.118096.
81. Tesarik J (2020) Melatonin attenuates growth factor receptor signaling required for SARS-CoV-2 replication. Melatonin Res. 3: 534–537. https://doi.org/10.32794/mr11250077.
82. Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, et al. (2019) The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled trial. Inflammopharmacology 27: 67–76. https://doi.org/10.1007/s10787-018-0539-0.
83. Sánchez-López AL, Ortiz GG, Pacheco-Moises FP, Mireles-Ramírez MA, Bitzer-Quintero OK, Delgado-Lara DLC, et al. (2018) Efficacy of Melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 49: 391–398. https://doi.org/10.1016/j.arcmed.2018.12.004.
84. Kücükakin B, Lykkesfeldt J, Nielsen HJ, Reiter RJ, Rosenberg J, Gögenur I (2018) Utility of melatonin to treat surgical stress after major vascular surgery - A safety study. J. Pineal Res. 44: 426–431. https://doi.org/10.1111/j.1600-079X.2007.00545.x.
85. Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, et al. (2018) The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J. Pineal Res. 65: https://doi.org/10.1111/jpi.12521.
86. Shafiei E, Bahtoei M, Raj P, Ostovar A, Iranpour D, Akbarzadeh S, et al. (2018) Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Med. (United States) 97 (30): e11383 doi.org/10.1097/MD.0000000000011383.
87. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395: 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7.
88. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
89. Volt H, García JA, Doerrier C, Díaz-Casado ME, Guerra-Librero A, Lõpez LC, et al. (2016) Same molecule but different expression: Aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J.. Pineal Res. 60: 193–205. https://doi.org/10.1111/jpi.12303.
90. Dai W, Huang H, Si L, Hu S, Zhou L, Xu L, et al. (2019) Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. Int. J. Mol. Med. 44: 1197–1204. https://doi.org/10.3892/ijmm.2019.4306.
91. Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, et al. (2020) Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J. Cell Physiol. 235: 2847–2856. https://doi.org/10.1002/jcp.29190.
92. Chen J, Xia H, Zhang L, Zhang H, Wang D, Tao X (2019) Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed. Pharmacother 117: 109150. doi.org/10.1016/j.biopha.2019.109150.
93. Lewandowska K, Małkiewicz MA, Siemiński M, Cubała WJ, Winklewski PJ, Mędrzycka-Dąbrowska WA. (2020) The role of melatonin and melatonin receptor agonist in the prevention of sleep disturbances and delirium in intensive care unit – a clinical review. Sleep Med. 69: 127–134. https://doi.org/10.1016/j.sleep.2020.01.019.
94. Castillo RR, Quizon GRA, Juco MJM, Roman ADE, De Leon DG, Punzalan FER, et al. (2020) Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): a case series. Melatonin Res. 3: 297–310. https://doi.org/10.32794/mr11250063.
95. Ramlall V, Zucker J, Tatonetti N (2020) Melatonin is significantly associated with survival of intubated COVID-19 patients. MedRxiv Prepr. Serv. Heal Sci. 2020: https://doi.org/10.1101/2020.10.15.20213546.
96. Cooper KR, Phillips BA (1982) Effect of short-term sleep loss on breathing. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 53: 855–858. https://doi.org/10.1152/jappl.1982.53.4.855.
97. Shilo L, Dagan Y, Smorjik Y, Weinberg U, Dolev S, Komptel B, et al. (2000) Effect of melatonin on sleep quality of COPD intensive care patients: A pilot study. Chronobiol. Int. 17: 71–76. https://doi.org/10.1081/CBI-100101033.
98. Majmundar M, Kansara T, Lenik JM, Park H, Ghosh K, Doshi R, et al. (2020) Efficacy of corticosteroids in non-intensive care unit patients with COVID-19 pneumonia from the New York Metropolitan region. PLoS One 15 (9): e0238827 doi.org/10.1371/journal.pone.0238827.
99. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14: 135. doi: 10.1186/1471-2288-14-135.
100. Reiter RJ, Abreu-Gonzalez P, Marik PE, Dominguez-Rodriguez A. (2020) Therapeutic algorithm for use of melatonin in patients with COVID-19. Front. Med. 7: 226. https://doi.org/10.3389/fmed.2020.00226.
101. Besag FMC, Vasey MJ, Lao KSJ, Wong ICK (2019) Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs 33: 1167–1186. https://doi.org/10.1007/s40263-019-00680-w.
102. Andersen LPH, Gögenur I, Rosenberg J, Reiter RJ (2016) the safety of melatonin in humans. Clin. Drug Investig. 36: 169–175. https://doi.org/10.1007/s40261-015-0368-5.
Published
2021-01-01
How to Cite
[1]
Brusco, L., Cruz, P., Cangas, A., Rojas, C., Vigo, D. and Cardinali, D. 2021. Efficacy of melatonin in non-intensive care unit patients with COVID-19 pneumonia and sleep dysregulation. Melatonin Research. 4, 1 (Jan. 2021), 173-188. DOI:https://doi.org/https://doi.org/10.32794/mr11250089.