Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2

Melatonin and viral infections

  • Leonor Chacin-Bonilla Instituto de Investigaciones Clinicas, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
  • Ernesto Bonilla Instituto de Investigaciones Clinicas, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
Keywords: Melatonin, viral infections, Venezuelan equine encephalomyelitis virus, Ebola virus, Zika virus, SARS-CoV-2, COVID-19.

Abstract


      Viral infections can cause serious diseases which lead to significant morbidity and mortality of patients. In most cases, effective therapeutic approaches are lacking. Melatonin (MEL), a multifunctional molecule produced in the pineal gland and many other organs, is known as a potent anti-inflammatory and antioxidant, a positive regulator of immune functions and a suppressor of apoptosis, with therapeutic effects in diverse diseases. These actions suggest the potential of MEL to treat viral infections. A variety of studies have shown that MEL supplementation is effective against a number of viral infections. Many of these reports have strongly suggested its use as an adjuvant or therapeutic agent. Notably, the efficacy of this molecule as a prophylactic or therapeutic weapon against COVID-19 has been demonstrated both in experimental conditions and in clinical trials, and it can reduce the severity and mortality of the patients. This review summarizes actions of MEL on viral infections and focuses on its therapeutic effects against COVID-19 and generally highlights MEL as an attractive therapy in other viral infections. 



References

1. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin--a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93 (3): 350-384. doi:10.1016/j.pneurobio.2010.12.004.
2. von Gall C (2022) The effects of light and the circadian system on rhythmic brain function. Int. J. Mol. Sci. 23 (5): 2778. doi: 10.3390/ijms23052778.
3. Claustrat B, Leston J (2015) Melatonin: Physiological effects in humans. Neurochirurgie 61 (2-3): 77-84. doi: 10.1016/j.neuchi.2015.03.002.
4. Mayo JC, Sainz RM, González-Menéndez P, Hevia D, Cernuda-Cernuda R (2017) Melatonin transport into mitochondria. Cell Mol. Life Sci. 74 (21): 3927-3940. doi: 10.1007/s00018-017-2616-8.
5. Ghosh AK, Naaz S, Bhattacharjee B, Ghosal N, Chattopadhyay A, Roy S, Reiter RJ, Bandyopadhyay D (2017) Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry. Life Sci. 180: 123-136. doi: 10.1016/j.lfs.2017.05.022.
6. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol. Life Sci. 71 (16): 2997-3025. doi: 10.1007/s00018-014-1579-2.
7. Venegas C, García JA, Escames G, Ortiz F, López A, Doerrier C, García-Corzo L, López LC, Reiter RJ, Acuña-Castroviejo D (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 52 (2): 217-227. doi: 10.1111/j.1600-079X.2011.00931.x.
8. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. 114 (38): E7997-E8006. doi: 10.1073/pnas.1705768114.
9. Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG (2022) Melatonin: A mitochondrial resident with a diverse skill set. Life Sci. 301: 120612. doi: 10.1016/j.lfs.2022.120612.
10. Córdoba-Moreno MO, Santos GC, Muxel SM, Dos Santos-Silva D, Quiles CL, Sousa KDS, Markus RP, Fernandes PACM (2023) IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis. J. Pineal Res. 22: e12923. doi: 10.1111/jpi.12923.
11. Reiter RJ (1991) Melatonin: That ubiquitously acting pineal hormone. Physiology 6 (5): 223-227. doi: 10.1152/physiologyonline.1991.6.5.223.
12. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, Wu HY, Chen CC, Hsu LF (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J. Pineal Res. 43 (4): 389-403. doi: 10.1111/j.1600-079X.2007.00490.x.
13. Hardeland R, Poeggeler B (2008) Melatonin beyond its classical functions. Open Physiol. J. 1: 1-23.
14. Hardeland R, Coto-Montes A (2010) New vistas on oxidative damage and aging. Open Biol. J. 3: 39-52. doi: 10.2174/18741967010030100039.
15. Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC (2010) Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J. Pineal Res. 48 (1): 20-38. doi: 10.1111/j.1600-079X.2009.00721.x.
16. Acuña Castroviejo D, López LC, Escames G, López A, García JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr. Top. Med. Chem. 11 (2): 221-240. doi: 10.2174/156802611794863517.
17. de Castro-Silva C, de Bruin VM, Cunha GM, Nunes DM, Medeiros CA, de Bruin PF (2010) Melatonin improves sleep and reduces nitrite in the exhaled breath condensate in cystic fibrosis-a randomized, double-blind placebo-controlled study. J. Pineal Res. 48 (1): 65-71. doi: 10.1111/j.1600-079X.2009.00726.x.
18. Rodella LF, Filippini F, Bonomini F, Bresciani R, Reiter RJ, Rezzani R (2010) Beneficial effects of melatonin on nicotine-induced vasculopathy. J. Pineal Res. 48 (2): 126-132. doi: 10.1111/j.1600-079X.2009.00735.x.
19. Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW, Kim YJ (2010) Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J. Pineal Res. 48 (2): 178-184. doi: 10.1111/j.1600-079x.2009.00742.x.
20. Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278 (1): 55-67. doi: 10.1016/j.tox.2010.04.008.
21. Chen CF, Wang D, Reiter RJ, Yeh DY (2011) Oral melatonin attenuates lung inflammation and airway hyperreactivity induced by inhalation of aerosolized pancreatic fluid in rats. J. Pineal Res. 50 (1): 46-53. doi:10.1111/j.1600-079X.2010.00808.x
22. Gitto E, Aversa S, Reiter RJ, Barberi I, Pellegrino S (2011) Update on the use of melatonin in pediatrics. J. Pineal Res. 50 (1): 21-28. doi: 10.1111/j.1600-079X.2010.00814.x.
23. Sánchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr. Med. Chem. 17 (19): 2070-2095. doi: 10.2174/092986710791233689.
24. Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol. 54 (10): 1299-1321. doi: 10.1211/002235702760345374.
25. Reiter RJ, Sharma R, Tan DX, Huang G, de Almeida Chuffa LG, Anderson G (2023) Melatonin modulates tumor metabolism and mitigates metastasis. Expert Rev. Endocrinol. Metab. 18 (4): 321-336. doi: 10.1080/17446651.2023.223 7103.
26. Andersen LP, Gögenur I, Rosenberg J, Reiter RJ (2016). The safety of melatonin in humans. Clin. Drug Investig. 36 (3): 169-175. doi: 10.1007/s40261-015-0368-5.
27. Tan D-X, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1: 57-60.
28. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell. Biochem. Biophys. 34 (2): 237-256. doi: 10.1385/CBB:34:2:237.26.
29. Guerrero JM, Pozo D, García-Mauriño S, Osuna C, Molinero P, Calvo JR (2000) Involvement of nuclear receptors in the enhanced IL-2 production by melatonin in Jurkat cells. Ann. N. Y. Acad Sci. 917: 397-403. doi: 10.1111/j.1749-6632.2000.tb05404.x.27.
30. Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr. Top. Med. Chem. 2 (2): 167-179. doi: 10.2174/1568026023394335.
31. Maestroni GJ (1999) Therapeutic potential of melatonin in immunodeficiency states, viral diseases, and cancer. Adv. Exp. Med. Biol. 467: 217-226. doi: 10.1007/978-1-4615-4709-9_28.
32. Huang SH, Cao XJ, Liu W, Shi XY, Wei W (2010) Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J. Pineal Res. 48 (2): 109-116. doi: 10.1111/j.1600-079X.2009.00733.x.
33. Vielma JR, Bonilla E, Chacín-Bonilla L, Mora M, Medina-Leendertz S, Bravo Y (2014) Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: A review. Acta Trop. 137: 31-38. doi: 10.1016/j.actatropica.2014.04.021.
34. Chacín-Bonilla L, Vielma JR, Bonilla E (2014) Should melatonin be considered a complementary or alternative therapy against parasitic infections?. Epidemiol. 4: e117. doi: 10.4172/2161-1165.1000e117.
35. Cárdenas R, Chacín-Bonilla L, Bonilla E (2023) Melatonin: A review of its physiopathological and therapeutic relationship with parasitic diseases. Melatonin Res. 6 (1): 28-50. doi: 10.32794/mr112500139.
36. Boga JA, Coto-Montes A, Rosales-Corral SA, Tan DX, Reiter RJ (2012). Beneficial actions of melatonin in the management of viral infections: a new use for this "molecular handyman"? Rev. Med. Virol. 22 (5): 323-338. doi: 10.100 2/rmv.1714.
37. Juybari KB, Pourhanifeh MH, Hosseinzadeh A, Hemati K, Mehrzadi S (2020) Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res. 287: 198108. doi: 10.1016%2Fj.virus res.2020.198108.
38. Alomari T, Al-Abdallat H, Hamamreh R, Alomari O, Hos BH, Reiter RJ (2023). Assessing the antiviral potential of melatonin: A comprehensive systematic review. Rev. Med. Virol. 21: e2499. doi: 10.1002/rmv.2499.
39. Zhaoa L, Chenab L, Guc P, Zhana X, Zhanga Y, Houa C, Wud Z, Wua Y-F, Wang Q-C (2019) Exogenous application of melatonin improves plant resistance to virus infection Plant Pathol. 68: 1287-1295. doi:10.1111/ppa.13057.
40. Tan DX, Korkmaz A, Reiter RJ, Manchester LC (2014) Ebola virus disease: potential use of melatonin as a treatment. J. Pineal Res. 57 (4): 381-384. doi: 10.1111/jpi.12186.
41. Wongchitrat P, Montri Yasawong M, and Watthanachai Jumpathong W, Tipsuda Chanmanee T, Samutpong A, Dangsakul W, Govitrapong P, Reiter RJ, Puthavathana P (2022) Melatonin inhibits Zika virus replication in Vero epithelial cells and SK-N-SH human neuroblastoma cells. Melatonin Res. 5 (2): 171-185. doi: 10.32794/mr112500127.
42. Loh D, Reiter RJ (2022). Melatonin: Regulation of viral phase separation and Epitranscriptomics in post-acute sequelae of COVID-19. Int. J. Mol. Sci. 23 (15): 8122. doi: 10.3390/ijms23158122.
43. Molina-Carballo A, Jerez-Calero AE, Fernández-López L, Augustin-Morales MC, Muñoz-Hoyos A, Agil A (2023). The preventive and protective role of melatonin in SARS-CoV-2 infection: a retrospective study. Melatonin Res. 6 (3): 372-396. doi:10.32794/mr11250015912500159.
44. Hardeland R (2018) Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res. 65 (4): e12525. doi: 10.1111/jpi.12525.
45. Cardinali DP, Brown GM, Pandi-Perumal SR (2020) Can melatonin be a potential "silver bullet" in treating COVID-19 patients? Diseases 8 (4): 44. doi: 10.3390/ diseases8040044.
46. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27 (2): 189-200. doi: 10.1385/ENDO:27:2:189.
47. Carrillo-Vico A, Reiter RJ, Lardone PJ, Herrera JL, Fernández-Montesinos R, Guerrero JM, Pozo D (2006) The modulatory role of melatonin on immune responsiveness. Curr. Opin. Investig. Drugs 7 (5):423-431
48. Szczepanik M (2007) Melatonin and its influence on immune system. J. Physiol. Pharmacol. 58 (Suppl. 6): 115-124.
49. Anderson G, Reiter RJ (2020) Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol. 30 (3): e2109. doi: 10.1002/rmv.2109.
50. Costa, E J, Lopes, R H, Lamy-Freund, M T (1995) Permeability of pure lipid bilayers to melatonin. J. Pineal Res. 19 (3): 123-126. doi.org/10.1111/j.1600-079x.1995.tb00180.x
51. Slominski, R M, Reiter, R J, Schlabritz-Loutsevitch, N, Ostrom, R S, Slominski, A T (2012) Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell Endocrinol. 351 (2): 152-166. doi: 10.1016/j.mce.2012.01.00 4.
52. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61 (3): 253-278. doi: 10.1111/jpi.12360.
53. Montiel M, Bonilla E, Valero N, Mosquera J, Espina LM, Quiroz Y, Álvarez‐Mon M (2015) Melatonin decreases brain apoptosis, oxidative stress, and cd200 expression and increased survival rate in mice infected by Venezuelan equine encephalitis virus. Antivir. Chem. Chemother. 24 (3-4): 99‐108. doi: 10.1177/2040206616660851.
54. Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y (2022) Potential therapeutic approach of melatonin against Omicron and some other variants of SARS-CoV-2. Molecules 27 (20): 6934. doi: 10.3390/molecules27206934.
55. Grose C (2010) Autophagy during common bacterial and viral infections of children. Pediatr. Infect. Dis. J. 29 (11): 1040-1042. doi: 10.1097/INF.0b013e318 1e77f43.
56. Vega-Naredo I, Caballero B, Sierra V, García-Macia M, de Gonzalo-Calvo D, Oliveira PJ, Rodríguez-Colunga MJ, Coto-Montes A (2012) Melatonin modulates autophagy through a redox-mediated action in female Syrian hamster Harderian gland controlling cell types and gland activity. J. Pineal Res. 52 (1): 80-92. doi:10.1111/j.1600-079X.2011.00922.x.
57. Ben-Nathan D, Maestroni GJ, Lustig S, Conti A (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 140 (2): 223-230. doi: 10.1007/BF01309858.
58. Bonilla E, Valero N, Ponds H, Chacín-Bonilla L (1997) Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol. Life Sci. 53 (5): 430-434. doi: 10.1007/s000180050051.
59. Kitidee K, Samutpong A, Pakpian N Wisitponchai T, Govitrapong P, Reiter RJ, Wongchitra P (2023) Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci. Rep. 13: 6063. doi: 10.1038/s41598-023-33254-4.
60. Morchang A, Malakar S, Poonudom K, Noisakran S, Yenchitsomanus PT, Limjindaporn T (2021) Melatonin inhibits dengue virus infection via the Sirtuin 1-mediated interferon pathway. Viruses 13 (4): 659. doi: 10.3390/v13040659.
61. Hill-Batorski L, Halfmann P, Neumann G, Kawaoka Y (2013) The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication. J. Virol. 87 (24): 13795-802. doi: 10.1128/JVI.02422-13.
62. Moreno ACR, Porchia BFMM, Pagni RL, Souza PDC, Pegoraro R, Rodrigues KB, Barros TB, Aps LRMM, de Araújo EF, Calich VLG, Ferreira LCS (2018) The combined use of melatonin and an indoleamine 2,3-Dioxygenase-1 inhibitor enhances vaccine-induced protective cellular immunity to HPV16-associated tumors. Front. Immunol. 9: 1914. doi: 10.3389/fimmu.2018.01914.
63. Baghban Rahimi S, Mohebbi A, Vakilzadeh G, Biglari P, Razeghi Jahromi S, Mohebi SR, Shirian S, Gorji A, Ghaemi A (2018) Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch. Virol. 163 (3): 587-597. doi: 10.1007/s00705-017-3647-z.
64. Negrette B, Bonilla E, Valero N, Pons H, Tamayo JG, Chacín-Bonilla L, Medina- Leendertz S, Añez F (2001) Melatonin treatment enhances the efficiency of mice immunization with Venezuelan equine encephalomyelitis virus TC-83. Neurochem. Res. 26 (7): 767-770. doi: 10.1023/a:1011645400123.
65. Regodón S, Martín-Palomino P, Fernández-Montesinos R, Herrera JL, Carrascosa-Salmoral MP, Píriz S, Vadillo S, Guerrero JM, Pozo D (2005) The use of melatonin as a vaccine agent. Vaccine 23 (46-47): 5321-5327. doi: 10.1016/j.vaccine.2005.07.003.
66. Maestroni GJ, Conti A, Pierpaoli W (1988) Pineal melatonin, its fundamental immunoregulatory role in aging and cancer. Ann. N. Y. Acad. Sci. 521: 140-148. doi: 10.1111/j.1749-6632.1988.tb35272.x.
67. Reiter RJ, Sharma R, Simko F, Dominguez-Rodriguez A, Tesarik J, Neel RL, Slominski AT, Kleszczynski K, Martin-Gimenez VM, Manucha W, Cardinali DP (2022) Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol. Life Sci. 79 (3): 143. doi: 10.1007/s00018-021-04102-3.
68. Vlachou M, Siamidi A, Dedeloudi A, Konstantinidou SK, Papanastasiou IP (2021) Pineal hormone melatonin as an adjuvant treatment for COVID 19. Int. J. Mol. Med. 47 (4): 47. doi: 10.3892/ijmm.2021.4880.
69. Carocci M, Bakkali-Kassimi L (2012) The encephalomyocarditis virus. Virulence 3 (4): 351-367. doi: 10.4161/viru.20573.
70. Bonilla E, Valero N, Chacín-Bonilla L, Medina-Leendertz S (2004) Melatonin and viral infections. J. Pineal Res. 36 (2): 73-79. doi: 10.1046/j.1600-079x.2003.00105.x.
71. Atkins GJ, Sheahan BJ (2016) Molecular determinants of alphavirus neuropathogenesis in mice. J. Gen. Virol. 97 (6): 1283-1296. doi: 10.1099/jgv. 0.000467.
72. Sejvar JJ (2016) West Nile virus infection. Microbiol. Spectr. 4 (3). doi: 10.1128/ microbiolspec.EI10-0021-2016.
73. Beller FK, Graeff H, Gorstein F (1969) Disseminated intravascular coagulation during the continuous infusion of endotoxin in rabbits. Morphologic and physiologic studies. Am. J. Obstet. Gynecol. 103 (4): 544-554. doi: 10.1016/s0002-9378(15)31857-3.
74. Stravitz RT, Lee WM (2019) Acute liver failure. Lancet 394 (10201): 869-881. doi: 10.1016/S0140-6736(19)31894-X.
75. Lemon SM, Ott JJ, Van Damme P, Shouval D (2017) Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J. Hepatol. 5: S0168-8278(17)32278-X. doi: 10.1016/j.jhep.2017. 08.034.
76. Tuñón MJ, San-Miguel B, Crespo I, Laliena A, Vallejo D, Álvarez M, Prieto J, González-Gallego J (2013) Melatonin treatment reduces endoplasmic reticulum stress and modulates the unfolded protein response in rabbits with lethal fulminant hepatitis of viral origin. J. Pineal Res. 55 (3): 221-228. doi: 10.1111/jpi.12063.
77. Crespo I, San-Miguel B, Sánchez DI, González-Fernández B, Álvarez M, González-Gallego J, Tuñón MJ (2016) Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 61 (2): 168-176. doi: 10.1111/jpi.12335.
78. Crespo I, Miguel BS, Laliena A, Alvarez M, Culebras JM, González-Gallego J, Tuñón MJ (2010) Melatonin prevents the decreased activity of antioxidant enzymes and activates nuclear erythroid 2-related factor 2 signaling in an animal model of fulminant hepatic failure of viral origin. J. Pineal Res. 49 (2): 193-200. doi: 10.1111/j.1600-079X.2010.00787.x.
79. Laliena A, San Miguel B, Crespo I, Alvarez M, González-Gallego J, Tuñón MJ (2012) Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 53 (3): 270-278. doi: 10.1111/j.1600-079X.2012.00995.x.
80. Tuñón MJ, San Miguel B, Crespo I, Jorquera F, Santamaría E, Alvarez M, Prieto J, González-Gallego J (2011) Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 50 (1): 38-45. doi: 10.1111/j.1600-079X.2010.00807.x.
81. San-Miguel B, Crespo I, Vallejo D, Álvarez M, Prieto J, González-Gallego J, Tuñón MJ (2014) Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 56 (3): 313-321. doi: 10.1111/jpi.12124.
82. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P (2019) Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 10 (4): 317. doi: 10.1038/s41419-019-1556-7.
83. Verdonschot J, Hazebroek M, Merken J, Debing Y, Dennert R, Brunner-La Rocca HP, Heymans S (2016) Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur. J. Heart Fail 18 (12): 1430-1441. doi: 10.1002/ejhf.665.
84. Van Linthout S, Tschöpe C, Schultheiss HP (2014) Lack in treatment options for virus-induced inflammatory cardiomyopathy: can iPS-derived cardiomyocytes close the gap? Circ. Res. 115 (6): 540-541. doi: 10.1161/CIRCRESAHA. 114.304951.
85. Richetta C, Faure M (2013) Autophagy in antiviral innate immunity. Cell Microbiol. 15 (3): 368-376. doi: 10.1111/cmi.12043.
86. Yoon SY, Ha YE, Choi JE, Ahn J, Lee H, Kweon HS, Lee JY, Kim DH (2008) Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. J. Virol. 82 (23): 11976-11978. doi: 10.1128/JVI.01028-08.
87. Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 82 (18): 9143-9153. doi: 10.1128/JVI.00641-08.
88. Orzalli MH, Kagan JC (2017) Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 27 (11):800-809. doi: 10.1016/j.tcb.2017.05.007.
89. Wang Y, Wang YL, Huang X, Yang Y, Zhao YJ, Wei CX, Zhao M (2017) Ibutilide protects against cardiomyocytes injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. Heart Vessels 32 (2): 208-215. doi: 10.1007/s00380-016-0891-1.
90. Wang Y, Sun Y, Fu Y, Guo X, Long J, Xuan LY, Wei CX, Zhao M (2017) Calumenin relieves cardiac injury by inhibiting ERS-initiated apoptosis during viral myocarditis. Int. J. Clin. Exp. Pathol. 10 (7): 7277-7284.
91. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 (7): 519-529. doi: 10.1038/nrm2199.
92. Lin L, Zhang M, Yan R, Shan H, Diao J, Wei J (2017) Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis. Biochem. Biophys. Res. Commun. 484 (3): 550-556. doi: 10.1016/j.bbrc.2017.01.116.
93. Ouyang H, Zhong J, Lu J, Zhong Y, Hu Y, Tan Y (2019) Inhibitory effect of melatonin on Mst1 ameliorates myocarditis through attenuating ER stress and mitochondrial dysfunction. J. Mol. Histol. 50 (5): 405-415. doi: 10.1007/s10735-019-09836-w.
94. Sang Y, Gu X, Pan L, Zhang C, Rong X, Wu T, Xia T, Li Y, Ge L, Zhang Y, Chu M (2018) Melatonin ameliorates Coxsackievirus B3-induced myocarditis by regulating apoptosis and autophagy. Front. Pharmacol. 9: 1384. doi: 10.3389/fphar.2018.01384.
95. Castelruiz Y, Blixenkrone-Møller M, Aasted B (2005) DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 23 (10): 1225-1231. doi: 10.1016/j.vaccine.2004.09.003.
96. Ellis LC (1996) Melatonin reduces mortality from Aleutian disease in mink (Mustela vison). J. Pineal Res. 21 (4): 214-217. doi: 10.1111/j.1600-079x.1996.tb00288.x.
97. Shafabakhsh R, Reiter RJ, Mirzaei H, Teymoordash SN, Asemi Z (2019) Melatonin: A new inhibitor agent for cervical cancer treatment. J. Cell Physiol. 234 (12): 21670-21682. doi: 10.1002/jcp.28865.
98. Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH (2020) Immunoregulatory role of melatonin in cancer. J. Cell Physiol. 235 (2): 745-757. doi: 10.1002/jcp.29036.
99. Moreno AC, Clara RO, Coimbra JB, Júlio AR, Albuquerque RC, Oliveira EM, Maria-Engler SS, Campa A (2013) The expanding roles of 1-methyl-tryptophan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells. FEBS J. 280 (19): 4782-4792. doi: 10.1111/febs.12444.
100. Yee GP, de Souza P, Khachigian LM (2013) Current and potential treatments for cervical cancer. Curr. Cancer Drug Targets 13 (2): 205-220. doi: 10.2174/15680096113-13020009.
101. Koshy E, Mengting L, Kumar H, Jianbo W (2018) Epidemiology, treatment and prevention of herpes zoster: A comprehensive review. Indian J. Dermatol. Venereol. Leprol. 84 (3): 251-262. doi: 10.4103/ijdvl.IJDVL_1021_ 16.40.
102. Saadatian-Elahi M, Bauduceau B, Del-Signore C, Vanhems P (2020) Diabetes as a risk factor for herpes zoster in adults: A synthetic literature review. Diabetes Res. Clin. Pract. 159: 107983. doi: 10.1016/j.diabres.2019.107983.
103. Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB, Ryman KD (2008) Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J. Virol. 82 (21): 10634-10646. doi: 10.1128/JVI.01323-08.
104. Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC (2004) Venezuelan equine encephalitis. Annu. Rev. Entomol. 49: 141-174. doi: 10.1146/annurev. ento.49.061802.12 3422.
105. Bonilla E, Rodón C, Valero N, Pons H, Chacín-Bonilla L, Tamayo JG, Rodríguez Z, Medina-Leendertz S, Añez F (2001) Melatonin prolongs survival of immunodepressed mice infected with the Venezuelan equine encephalomyelitis virus. Trans. R. Soc. Trop. Med. Hyg. 95 (2): 207-210. doi: 10.1016/s0035-9203(01)90170-1.
106. Valero N, Bonilla E, Pons H, Chacin-Bonilla L, Añez F, Espina LM, Medina-Leendertz S, García Tamayo J (2002) Melatonin induces changes to serum cytokines in mice infected with the Venezuelan equine encephalomyelitis virus. Trans. R. Soc. Trop. Med. Hyg. 96 (3): 348-351. doi: 10.1016/s0035-9203(02)90121-5.
107. Arias J, Meleán E, Valero N, Ponds H, Chacín-Bonilla L, Larreal Y, Bonilla E (2003) Efecto de la melatonina en la proliferación linfocitaria y la producción de interleucina 2 (IL-2) e interleucina 1 beta (IL-1β) en esplenocitos de ratones. Invest. Clin. 44 (1): 41-50.
108. Bonilla E, Valero N, Chacín-Bonilla L, Pons H, Larreal Y, Medina-Leendertz S, Espina LM (2003) Melatonin increases interleukin-1β and decreases tumor necrosis factor alpha in the brain of mice infected with the Venezuelan equine encephalomyelitis virus. Neurochem. Res. 28 (5): 681-686. doi: 10.1023/a:1022897314108.
109. Valero N, Nery A, Bonilla E, Espina LM, Chacín-Bonilla L, Anez F, Maldonado M, Meleán E (2009) Antagonistic effect of luzindole in mice treated with melatonin during the infection with the Venezuelan equine encephalomyelitis virus. Neurochem. Res. 34 (2): 268-273. doi: 10.1007/s11064-008-9766-x.
110. Medina S, Valero-Fuenmayor N, Chacín-Bonilla L, Anez F, Giraldoth D, Arias J, Espina G, Achong AY, Bonilla E (1999) Exposure to 2500 lux increases serum melatonin in Venezuelan equine encephalomyelitis. Neurochem. Res. 24 (6): 775-778. doi: 10.1023/a:1020735730869. 

111. Medina-Leendertz S, Valero N, Chacín-Bonilla L, Añez F, Giraldoth D, Arias J, Espina G, Díaz S, Bonilla E (2001) High intensity light increases olfactory bulb melatonin in Venezuelan equine encephalitis virus infection. Neurochem. Res. 26 (3): 231-234. doi: 10.1023/a:1010964500370.
112. Vogel P, Abplanalp D, Kell W, Ibrahim MS, Downs MB, Pratt WD, Davis KJ (1996) Venezuelan equine encephalitis in BALB/c mice: kinetic analysis of central nervous system infection following aerosol or subcutaneous inoculation. Arch. Pathol. Lab. Med. 120 (2): 164-172.
113. Valero N, Meleán E, Bonilla E, Arias J, Espina LM, Chacín-Bonilla L, Larreal Y, Maldonado M, Anez F (2005) In vitro, melatonin treatment decreases nitric oxide levels in murine splenocytes cultured with the Venezuelan equine encephalomyelitis virus. Neurochem. Res. 30 (11): 1439-1442. doi: 10.1007/s11064-005-8634-1.
114. Valero N, Espina LM, Bonilla E, Mosquera J (2007) Melatonin decreases nitric oxide production and lipid peroxidation and increases interleukin-1 beta in the brain of mice infected by the Venezuelan equine encephalomyelitis virus. J. Pineal Res. 42 (2): 107-112. doi: 10.1111/j.1600-079X.2006.00381.x.
115. Sharma A, Bhattacharya B, Puri RK, Maheshwari RK (2008) Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain. BMC Genomics 9: 289. doi: 10.1186/1471-2164-9-289.
116. Burrack KS, Morrison TE (2014) The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front. Immunol. 5: 428. doi: 10.3389/fimmu.2014.00428.
117. Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL, Heffernan JR, Hou J, Miller MJ, Klein RS (2017) Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 308: 118-130. doi: 10.1016/j.jneuroim.2017.04.008.
118. Keck F, Kortchak S, Bakovic A, Roberts B, Agrawal N, Narayanan A (2018) Direct and indirect pro-inflammatory cytokine response resulting from TC-83 infection of glial cells. Virulence 9 (1): 1403-1421. doi: 10.1080/2150 5594.2018.1509668.
119. Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman JD, Jacobs JL, Kehn-Hall K (2016) Venezuelan equine encephalitis virus induces apoptosis through the unfolded protein response activation of EGR1. J. Virol. 2016 90 (7): 3558-3572. doi: 10.1128/JVI.02827-15.
120. Yun SI, Lee YM (2014) Japanese encephalitis: the virus and vaccines. Hum. Vaccin. Immunother. 10 (2): 263-279. doi: 10.4161/hv.26902.
121. Wongchitrat P, Samutpong A, Lerdsamran H, Prasertsopon J, Yasawong M, Govitrapong P, Puthavathana P, Kitidee K (2019) Elevation of cleaved p18 Bax levels associated with the kinetics of neuronal cell death during Japanese encephalitis virus infection. Int. J. Mol. Sci. 20 (20): 5016. doi: 10.3390/ijms20 205016.
122. Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z (2021) Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 12 (1): 968-980. doi: 10.1080/21505594.2021.1899674.
123. Mishra MK, Basu A (2008) Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J. Neurochem. 105 (5): 1582-1595. doi: 10.1111/j.1471-4159.2008.05238.x.
124. Lannes N, Summerfield A, Filgueira L (2017) Regulation of inflammation in Japanese encephalitis. J. Neuroinflammation 14 (1): 158. doi: 10.1186/s12974-017-0931-5.
125. Lixia H, Jun C, Song H, FaHu Y, Jinwen T (2018) Neuroprotective effect of (-)-tetrahydropalmatine in Japanese encephalitis virus strain GP-78 infected mouse model. Microb. Pathog. 114:197-203. doi: 10.1016/j.micpath.2017.11.047.
126. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: History, emergence, biology, and prospects for control. Antiviral Res. 130: 69-80. doi: 10.1016/j.antiviral.2016. 03.010.
127. Russo FB, Jungmann P, Beltrão-Braga PCB (2017) Zika infection and the development of neurological defects. Cell Microbiol. 19 (6): e12744. doi: 10.1111/cmi.12744.
128. Carod-Artal FJ (2018) Neurological complications of Zika virus infection. Expert Rev. Anti Infect. Ther. 16 (5): 399-410. doi: 10.1080/14787210.2018. 1466702.
129. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet H, Musso D, Ghawche F (2014) Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro. Surveill. 19 (9): 20720. doi: 10.2807/1560-7917.es2014.19.9.20720.
130. Horcharoensuk P, Yang-En S, Chakritbudsabong W, Samatiwat P, Pramong R, Rungarunlert S, Rungsiwiwut R (2022). Melatonin attenuates dimethyl sulfoxide- and Zika virus-induced degeneration of porcine induced neural stem cells. In Vitro Cell Dev. Biol. Anim. 58 (3): 232-242. doi: 10.1007/s11626-022-00648-z.
131. Pathak N, Kuo YP, Chang TY, Huang CT, Hung HC, Hsu JT, Yu GY, Yang JM (2020) Zika virus NS3 protease pharmacophore anchor model and drug discovery. Sci. Rep. 10 (1): 8929. doi: 10.1038/s41598-020-65489-w.
132. Reiter RJ, Sharma R, DA Chuffa LG, Zuccari DA, Amaral FG, Cipolla-Neto J (2024). Melatonin-mediated actions and circadian functions that improve implantation, fetal health and pregnancy outcome. Reprod. Toxicol. 124: 108534. doi: 10.1016/j. reprotox.2024.108534.
133. Roy SK, Bhattacharjee S (2021) Dengue virus: epidemiology, biology, and disease aetiology. Can. J. Microbiol. 67 (10): 687-702. doi: 10.1139/cjm-2020-0572.
134. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496 (7446): 504-507. doi: 10.1038/nature12060.
135. Guzman MG, Harris E (2015) Dengue. Lancet 385 (9966): 453-465. doi: 10.1016/S0140-6736(14)60572-9.
136. Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF (2018) Highlights for dengue immunopathogenesis: Antibody-dependent enhancement, cytokine storm, and beyond. J. Interferon Cytokine Res. 38 (2): 69-80. doi: 10.1089/jir.2017.0037.
137. Paemanee A, Hitakarun A, Roytrakul S, Smith DR (2018) Screening of melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol for anti-dengue 2 virus activity. BMC Res. Notes. 11 (1): 307. doi: 10.1186/s13104-018-3417-3.
138. Ansari Dezfouli M, Zahmatkesh M, Farahmandfar M, Khodagholi F (2019) Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol. Behav. 204: 65-75. doi: 10.1016/j.physbeh.2019. 02.016.
139. Favero G, Franco C, Stacchiotti A, Rodella LF, Rezzani R (2020) Sirtuin1 role in the melatonin protective effects against obesity-related heart injury. Front. Physiol. 11:103. doi: 10.3389/fphys.2020.00103.
140. Jiang D, Weidner JM, Qing M, Pan XB, Guo H, Xu C, Zhang X, Birk A, Chang J, Shi PY, Block TM, Guo JT (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J. Virol. 84 (16): 8332-41. doi: 10.1128/JVI.02199-09.
141. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, Chen CL, Ho TS, AbuBakar S, Lin YS (2017) Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci. Rep. 7: 42998. doi: 10.1038/srep42998.
142. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472 (7344): 481-485. doi: 10.1038/nature 09907.
143. Nicastri E, Kobinger G, Vairo F, Montaldo C, Mboera LEG, Ansunama R, Zumla A, Ippolito G (2019) Ebola virus disease: Epidemiology, clinical features, management, and prevention. Infect. Dis. Clin. North Am. 33 (4): 953-976. doi: 10.1016/j.idc.2019.08.005.
144. Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362 (9400): 1953-1958. doi: 10.1016/S0140-6736(03)15012-X.
145. Lyon GM, Mehta AK, Varkey JB, Brantly K, Plyler L, McElroy AK, Kraft CS, Towner JS, Spiropoulou C, Ströher U, Uyeki TM, Ribner BS (2014). Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371 (25): 2402-2409. doi: 10.1056/NEJMoa1409838.
146. Junaid A, Tang H, van Reeuwijk A, Abouleila Y, Wuelfroth P, van Duinen V, Stam W, van Zonneveld AJ, Hankemeier T, Mashaghi A (2020) Ebola hemorrhagic shock syndrome-on-a-chip. J. iSci. 23 (1): 100765. doi: 10.1016/j. isci.2019.100765.
147. Reiter RJ, Ma Q, Sharma R (2020) Treatment of Ebola and other infectious diseases: Melatonin “goes viral”. Melatonin Res. 3 (1): 43-57. doi: 10.32794/mr112500 47.
148. Mohan GS, Ye L, Li W, Monteiro A, Lin X, Sapkota B, Pollack BP, Compans RW, Yang C (2015) Less is more: Ebola virus surface glycoprotein expression levels regulate virus production and infectivity. J. Virol. 89 (2): 1205-1217. doi: 10.1128/JVI.01810-14.
149. Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Vagts DA, Scheeren TW, Vollmar B, Nöldge-Schomburg GE, Zacharowski K (2009) Bbeta15-42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit. Care Med. 37 (2): 598-605. doi: 10.1097/CCM.0b013e3181959a12.
150. Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF (2017) Cancer metastasis: Mechanisms of inhibition by melatonin. J. Pineal Res. 62 (1). doi: 10.1111/jpi.12370.
151. Mortezaee K, Potes Y, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B (2019) Boosting immune system against cancer by melatonin: A mechanistic viewpoint. Life Sci. 238: 116960. doi: 10.1016/j.lfs.2019.116960.
152. Tan D-X, Reiter RJ (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2 (1): 44-66. doi: 10.32794/ mr11250011.
153. Sigurs N, Aljassim F, Kjellman B, Robinson PD, Sigurbergsson F, Bjarnason R, gustafsson PM (2010) Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 65 (12): 1045-1052. doi: 10.1136/thx.2009.121582.
154. Zomer-Kooijker K, van der Ent CK, Ermers MJ, Uiterwaal CS, Rovers MM, Bont LJ (2014). Increased risk of wheeze and decreased lung function after respiratory syncytial virus infection. PLoS One 9 (1): e87162. doi: 10.1371/journal.pone.0087162.
155. Gil-Prieto R, Gonzalez-Escalada A, Marín-García P, Gallardo-Pino C, Gil-de-Miguel A (2015) Respiratory syncytial virus bronchiolitis in children up to 5 years of age in Spain: Epidemiology and comorbidities: An observational study. Medicine 94 (21): e831. doi: 10.1097/MD.0000000000000831.
156. Shay DK, Holman RC, Roosevelt GE, Clarke MJ, Anderson LJ (2001) Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979-1997. J. Infect. Dis. 183 (1):16-22. doi: 10.1086/317655.
157. Falsey AR, McElhaney JE, Beran J, van Essen GA, Duval X, Esen M, Galtier F, Gervais P, Hwang SJ, Kremsner P, Launay O, Leroux-Roels G, McNeil SA, Nowakowski A, Richardus JH, Ruiz-Palacios G, St Rose S, Devaster JM, Oostvogels L, Durviaux S, Taylor S (2014) Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness. J. Infect Dis. 209 (12): 1873-1881. doi: 10.1093/infdis/jit839.
158. Ruckwardt TJ, Morabito KM, Graham BS (2019) Immunological lessons from respiratory syncytial virus vaccine development. Immunity 51 (3): 429-442. doi: 10.1016/j.immuni.2019.08.007.
159. McNamara PS, Smyth RL (2002) The pathogenesis of respiratory syncytial virus disease in childhood. Br. Med. Bull. 61: 13-28. doi: 10.1093/bmb/61.1.13.
160. Nuriev R, Johansson C (2019) Chemokine regulation of inflammation during respiratory syncytial virus infection. F1000Res. 8:1837. doi: 10.12688/f1000research.20061.1.
161. Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW, Sun T, Qiu H, Huang SH (2018) Oxidative stress modulates the expression of toll like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol. Med. Rep. 18 (2): 1867-1877. doi: 10.3892/mmr.2018.9089.
162. Rudd BD, Burstein E, Duckett CS, Li X, Lukacs NW (2005) Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J. Virol. 79 (6): 3350-3357.doi: 10.1128/JVI.79.6.3350-3357.2005.
163. Bakunina N, Pariante CM, Zunszain PA (2015) Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144 (3): 365-373. doi: 10.1111/imm.12443.
164. Jamaluddin M, Tian B, Boldogh I, Garofalo RP, Brasier AR (2009) Respiratory syncytial virus infection induces a reactive oxygen species-MSK1-phospho-Ser-276 RelA pathway required for cytokine expression. J. Virol. 83 (20): 10605-10615. doi: 10.1128/JVI.01090-09.
165. Liu T, Castro S, Brasier AR, Jamaluddin M, Garofalo RP, Casola A (2004) Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J. Biol. Chem. 279 (4): 2461-2469. doi: 10.1074/jbc.M30 7251200.
166. Huang SH, Cao XJ, Wei W (2008) Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-kappa B activation in respiratory syncytial virus-infected RAW264.7 macrophages. J. Pineal Res. 45 (1): 93-100. doi: 10.1111/j.1600-079X.2008.00560.x.
167. Skelton RM, Huber VC (2022) Comparing influenza virus biology for understanding influenza D virus. Viruses 14 (5): 1036. doi: 10.3390/v14051036.
168. Perrone LA, Plowden JK, García-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice (2008) PLoS Pathog. 4 (8): e1000115. doi: 10.1371/journal.ppat.1000115.
169. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc. Natl. Acad. Sci. U S A. 87 (7): 2506-2510. doi: 10.1073/pnas.87.7.2506.
170. Bender BS, Croghan T, Zhang L, Small PA Jr (1992) Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J. Exp. Med. 175 (4): 1143-5. doi: 10.1084/jem.175.4.1143.
171. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha do Q, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12 (10): 1203-1207. doi: 10.1038/nm1477.
172. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445 (7125): 319-323. doi: 10.1038/nature05495.
173. van de Sandt CE, Bárcena M, Koster AJ, Kasper J, Kirkpatrick CJ, Scott DP, de Vries RD, Herold S, Rimmelzwaan GF, Kuiken T, Short KR (2017) Human CD8+ T cells damage noninfected epithelial cells during influenza virus infection in vitro. Am. J. Respir. Cell Mol. Biol. 57 (5): 536-546. doi: 10.1165/rcmb.2016-0377OC.
174. da Silveira Cruz-Machado S, Pinato L, Tamura EK, Carvalho-Sousa CE, Markus RP (2012) Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF). PLoS One 7 (7): e40142. doi: 10.1371/journal.pone.0040142.
175. Huang SH, Liao CL, Chen SJ, Shi LG, Lin L, Chen YW, Cheng CP, Sytwu HK, Shang ST, Lin GJ (2019) Melatonin possesses an anti-influenza potential through its immune modulatory effect. J. Funct. Foods 58: 189-198. doi: 10.1016/j.jff.2019.04.062.
176. Truong KK, Lam MT, Grandner MA, Sassoon CS, Malhotra A (2016) Timing matters: Circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer. Ann. Am. Thorac. Soc. 13 (7): 1144-1154. doi: 10.1513/AnnalsATS.201602-125FR.
177. Majumdar T, Dhar J, Patel S, Kondratov R, Barik S (2017) Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses. Innate Immun. 23 (2): 147-154. doi: 10.1177/1753425916681075.
178. Zhai X, Wang N, Jiao H, Zhang J, Li C, Ren W, Reiter RJ, Su S (2021) Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. J. Pineal Res. 71 (2): e12754. doi: 10.1111/jpi.12754.
179. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5 (4): 536-544. doi: 10.1038/s41564-020-0695-z.
180. Ahmed SS (2020) The Coronavirus disease 2019 (COVID-19): a review. J. Adv. Med. Medical Res. 32 (4): 1-9. doi:10.9734/jammr/2020/v32i430393.
181. Thomas-Rüddel D, Winning J, Dickmann P, Ouart D, Kortgen A, Janssens U, Bauer M (2020) Coronavirus disease 2019 (COVID-19): Update for anesthesiologists and intensivists. Anaesthesist 69 (4): 225-235. doi: 10.1007/s00101-020-00758-x.
182. Patel S, Saxena B, Mehta P (2021) Recent updates in the clinical trials of therapeutic monoclonal antibodies targeting cytokine storm for the management of COVID-19. Heliyon 7 (2): e06158. doi: 10.1016/j.heliyon.2021.e06158.
183. Franchini M, Veneri D, Lippi G (2017). Thrombocytopenia and infections. Expert Rev. Hematol. 10 (1): 99-106. doi: 10.1080/17474086.2017.1271319.
184. Liu Y, Sun W, Guo Y, Chen L, Zhang L, Zhao S, Long D, Yu L (2020) Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets 31 (4): 490-496. doi: 10.1080/09537104.2020.17 54383.
185. White-Dzuro G, Gibson LE, Zazzeron L, White-Dzuro C, Sullivan Z, Diiorio DA, Low SA, Chang MG, Bittner EA (2021) Multisystem effects of COVID-19: a concise review for practitioners. Postgrad. Med. 133 (1): 20-27. doi: 10.1080/00325481.2020.1823094.
186. Luo X, Lv M, Zhang X, Estill J, Yang B, Lei R, Ren M, Liu Y, Wang L, Liu X, Wang Q, Meng M, Chen Y (2022) COVID-19 evidence and recommendations working group. Clinical manifestations of COVID-19: An overview of 102 systematic reviews with evidence mapping. J. Evid. Based Med. 15 (3): 201-215. doi: 10.1111/jebm.12483.
187. Chacin-Bonilla L (2023) Long COVID-19. Med. Discoveries 2 (8): 1068. doi: 10.52768/2 993-1142/1068.
188. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB (2020) Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383 (6): 590-592. doi: 10.1056/NEJMc2011400.
189. Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, Sun J, Dickey JM, Ylaya K, Ko SH, Platt AP, Burbelo PD, Quezado M, Pittaluga S, Purcell M, Munster VJ, Belinky F, Ramos-Benitez MJ, Boritz EA, Lach IA, Herr DL, Rabin J, Saharia KK, Madathil RJ, Tabatabai A, Soherwardi S, McCurdy MT; NIH COVID-19 Autopsy Consortium; Peterson KE, Cohen JI, de Wit E, Vannella KM, Hewitt SM, Kleiner DE, Chertow DS (2022) SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612 (7941): 758-763. doi: 10.1038/s41586-022-05542-y.
190. Normandin E, Valizadeh N, Rudmann EA, Uddin R, Dobbins ST, MacInnis BL, Padera RF, Siddle KJ, Lemieux JE, Sabeti PC, Mukerji SS, Solomon IH (2023) Neuropathological features of SARS-CoV-2 delta and omicron variants. J. Neuropathol. Exp. Neurol. 82 (4): 283-295. doi: 10.1093/jnen/nlad015.
191. ldfield PR, Hibberd J, Bridle BW (2021) How does severe acute respiratory syndrome-coronavirus-2 affect the brain and its implications for the vaccines currently in use. Vaccines 10 (1): 1. doi: 10.3390/vaccines10010001.
192. Erickson MA, Rhea EM, Knopp RC, Banks WA (2021) Interactions of SARS-CoV-2 with the blood-brain barrier. Int. J. Mol. Sci. 22 (5): 2681. doi: 10.3390/ijms22052681.
193. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2): 271-280.e8. doi:10.1016/j.cell.2020. 02.052.
194. Hülsmann S, Khabbazzadeh S, Meissner K, Quintel MA (2021) Potential role of the renin-angiotensin-system for disturbances of respiratory chemosensitivity in acute respiratory distress syndrome and severe acute respiratory syndrome. Front. Physiol. 11: 588248. doi: 10.3389/fphys.2020. 588248.
195. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 39 (7): 2085-2094. doi: 10.1007/s10067-020-05190-5.
196. Tan D-X, Hardeland R (2020) Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: Focus on COVID-19. Melatonin Res. 3 (1): 120-143. doi:10.32794/ mr11250052.
197. Qu R, Ling Y, Zhang YH, Wei LY, Chen X, Li XM, Liu XY, Liu HM, Guo Z, Ren H, Wang Q (2020) Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 92 (9): 1533-1541. doi: 10.1002/jmv.25767.
198. Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K (2020) High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 18 (7): 1743-1746. doi: 10.1111/jth.14869.
199. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18 (4): 844-847. doi: 10.1111/jth.14768.
200. Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D (2017) Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J. Thromb. Thrombolysis 44 (3): 377-385. doi: 10.1007/s11239-017-1528-7.
201. Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. Semin. Thromb. Hemost. 32 (Suppl. 1): 3-15. doi: 10.1055/s-2006-939550.
202. Lazzaroni MG, Piantoni S, Masneri S, Garrafa E, Martini G, Tincani A, Andreoli L, Franceschini F (2021) Coagulation dysfunction in COVID-19: The interplay between inflammation, viral infection and the coagulation system. Blood Rev. 46: 100745. doi: 10.1016/j.blre.2020.100745.
203. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, Liu XH, Zhu CL (2020) Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin. Chem. Lab. Med. 58 (7): 1116-1120. doi: 10.1515/cclm-2020-0188.
204. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, Yaffe MB, Moore HB, Barrett CD (2020) Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb. Haemost. 18 (7): 1752-1755. doi: 10.1111/jth.14828.
205. Schedel A, Thornton S, Schloss P, Klüter H, Bugert P (2011) Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler. Thromb. Vasc. Biol. 31 (4): 928-934. doi: 10.1161/ATVBAHA.110.218297.
206. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, Salvador D Jr, Groothof D, Minder B, Kopp-Heim D, Hautz WE, Eisenga MF, Franco OH, Glisic M, Muka T (2020) Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur. J. Epidemiol. 35 (8):763-773. doi: 10.1007/s10654-020-00678-5.
207. Yağcı S, Serin E, Acicbe Ö, Zeren Mİ, Odabaşı MS (2021) The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19. Int. J. Lab. Hematol. 43 (Suppl. 1): 142-151. doi: 10.1111/ijlh.13479.
208. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, Chan V, Ling L, Joynt G, Hui DS, Chow KM, Ng SSS, Li TC, Ng RW, Yip TC, Wong GL, Chan FK, Wong CK, Chan PK, Ng SC (2021) Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70 (4): 698-706. doi: 10.1136/gutjnl-2020-323020.
209. Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de Las Heras N (2023) Gut microbiota dysbiosis in COVID-19: Modulation and approaches for prevention and therapy. Int. J. Mol. Sci. 24 (15): 12249. doi: 10.3390/ijms241512249.
210. Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E; Yale IMPACT Research Team, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J (2022) Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat. Commun. 13 (1): 5926. doi: 10.1038/s41467-022-33395-6.
211. Gao K, Mu CL, Farzi A, Zhu WY (2020) Tryptophan metabolism: A link between the gut microbiota and brain. Adv. Nutr. 11 (3): 709-723. doi: 10.1093/advances/nmz127.
212. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ (2018) The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev. 98 (1): 505-553. doi: 10.1152/physrev.00023.2016.
213. Hosang L, Canals RC, van der Flier FJ, Hollensteiner J, Daniel R, Flügel A, Odoardi F (2022) The lung microbiome regulates brain autoimmunity. Nature 603 (7899): 138-144. doi: 10.1038/s41586-022-04427-4.
214. Hashimoto Y, Eguchi A, Wei Y, Shinno-Hashimoto H, Fujita Y, Ishima T, Chang L, Mori C, Suzuki T, Hashimoto K (2022) Antibiotic-induced microbiome depletion improves LPS-induced acute lung injury via gut-lung axis. Life Sci. 307: 120885. doi: 10.1016/j.lfs.2022.120885.
215. Akter S, Tasnim S, Barua R, Choubey M, Arbee S, Mohib MM, Minhaz N, Choudhury A, Sarker P, Mohiuddin MS (2023) The effect of COVID-19 on gut microbiota: Exploring the complex interplay and implications for human health. Gastrointest. Disord. 5: 340-356. doi: 10.3390/ gidisord5030028.
216. Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng NY, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B (2019) Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178 (6): 1313-1328.e13. doi: 10.1016/j.cell.2019.08.010. PMID: 31491384.
217. O'Connor D, Pollard AJ (2013) Characterizing vaccine responses using host genomic and transcriptomic analysis. Clin. Infect. Dis. 57 (6): 860-869. doi: 10.1093/cid/cit373.
218. Stavropoulou E, Bezirtzoglou E (2020) Probiotics in medicine: A long debate. Front. Immunol. 11: 2192. doi: 10.3389/fimmu.2020.02192.
219. Tan D-X, Hardeland R (2020) Estimated doses of melatonin for treating deadly virus infections: focus on COVID-19. Melatonin Res. 3 (3): 276-296. doi: 10.32794/mr11250062.
220. Gurunathan S, Kang M-H, Choi Y, Reiter RJ, Kim J-H (2021) Melatonin: A potential therapeutic agent against COVID-19. Melatonin Res. 4 (1): 30-69. doi: 10.32794/mr11250081.
221. Brusco L, Cruz P, Cangas A, Rojas C, Vigo D, Cardinali D (2021) Efficacy of melatonin in non-intensive care unit patients with COVID-19 pneumonia and sleep dysregulation. Melatonin Res. 4 (1): 173-188. doi: 10.32794/mr11250089.
222. Zhuang X, Tsukuda S, Wrensch F, Wing PAC, Schilling M, Harris JM, Borrmann H, Morgan SB, Cane JL, Mailly L, Thakur N, Conceicao C, Sanghani H, Heydmann L, Bach C, Ashton A, Walsh S, Tan TK, Schimanski L, Huang KA, Schuster C, Watashi K, Hinks TSC, Jagannath A, Vausdevan SR, Bailey D, Baumert TF, McKeating JA (2021) The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience. 24 (10): 103144. doi: 10.1016/j.isci.2021.103144.
223. Habtemariam S, Daglia M, Sureda A, Selamoglu Z, Gulhan MF, Nabavi SM (2017) Melatonin and respiratory diseases: A review. Curr. Top. Med. Chem. 17 (4): 467-488. doi: 10.2174/1568026616666160824120338.
224. Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N (2020) Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci. 257: 118096. doi: 10.1016/j.lfs.2020.118096.
225. Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR (2020) Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur. J. Pharmacol. 881: 173282. doi: 10.1016/j.ejphar.2020.173282.
226. Ling Y, Li ZZ, Zhang JF, Zheng XW, Lei ZQ, Chen RY, Feng JH (2018) MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci. 210: 1-8. doi:10.1016/ j.lfs.2018.08.037.
227. Martín Giménez VM, Inserra F, Tajer CD, Mariani J, Ferder L, Reiter RJ, Manucha W (2020) Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci. 254: 117808. doi: 10.1016/j.lfs.2020.117808.
228. Bouhafs RK, Jarstrand C (2002) Effects of antioxidants on surfactant peroxidation by stimulated human polymorphonuclear leukocytes. Free Radic. Res. 36 (7): 727-734. doi: 10.1080/10715760290032593.
229. Zhang Y, Li X, Grailer JJ, Wang N, Wang M, Yao J, Zhong R, Gao GF, Ward PA, Tan DX, Li X (2016) Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res. 60 (4): 405-414. doi: 10.1111/jpi.12322.
230. Al-Rasheed NM, Fadda L, Attia HA, Sharaf IA, Mohamed AM, Al-Rasheed NM (2017) Pulmonary prophylactic impact of melatonin and/or quercetin: A novel therapy for inflammatory hypoxic stress in rats. Acta Pharm. 67 (1): 125-135. doi: 10.1515/acph-2017-0010.
231. Pita R, Marco-Contelles J, Ramos E, Del Pino J, Romero A (2013) Toxicity induced by chemical warfare agents: insights on the protective role of melatonin. Chem. Biol. Interact. 206 (2): 134-142. doi: 10.1016/j.cbi.2013.09.001.
232. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, Yuan Y (2014) Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J. Pineal Res. 57: 442‐450. doi: 10.1111/jpi.12184.
233. Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ (2020) Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir. Res. 21 (1): 65. doi: 10.1186/s12931-020-1325-2.
234. Yim J, Lim HH, Kwon Y (2021) COVID-19 and pulmonary fibrosis: Therapeutics in clinical trials, repurposing, and potential development. Arch. Pharm. Res. 44 (5): 499-513. doi: 10.1007/s12272-021-01331-9.
235. Ben Soussia I, Mies F, Naeije R, Shlyonsky V (2012) Melatonin down-regulates volume-sensitive chloride channels in fibroblasts. Pflugers Arch. 464 (3): 273-285. doi: 10.1007/s00424-012-1139-2.
236. Farhood B, Aliasgharzadeh A, Amini P, Rezaeyan A, Tavassoli A, Motevaseli E, Shabeeb D, Musa AE, Najafi M (2019) Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina (Kaunas). 55 (8): 417. doi: 10.3390/ medicina55080417.
237. Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S (2018) Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert. Opin. Ther. Targets 22 (12): 1049-1061. doi: 10.1080/14728222.2018.1541318.
238. Bosco AD, Schedler FB, Colares JR, Schemitt EG, Hartmann RM, Forgiarini Junior LA, Dias AS, Marroni NP (2019) Melatonin effects on pulmonary tissue in the experimental model of hepatopulmonary syndrome. J. Bras. Pneumol. 45 (3): e20170164. doi: 10.1590/1806-3713/e20170164.
239. Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D'Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A (2020) COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin. Exp. Res. 32 (8): 1599-1608. doi: 10.1007/s40520-020-01631-y.
240. Sundberg I, Ramklint M, Stridsberg M, Papadopoulos FC, Ekselius L, Cunningham JL (2016) Salivary melatonin in relation to depressive symptom severity in young adults. PLoS One 11 (4): e0152814. doi: 10.1371/ journal. pone.0152814.
241. Souissi A, Dergaa I, Romdhani M, Ghram A, Irandoust K, Chamari K, Ben Saad H (2023) Can melatonin reduce the severity of post-COVID-19 syndrome? EXCLI J. 22: 173-187. doi: 10.17179/excli2023-5864.
242. Reiter RJ, Sharma R, Rosales-Corral S (2021) Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases. Int. J. Mol. Sci. 22 (2): 764. doi:10.3390/ijms22020764.
243. Sánchez-López AL, Ortiz GG, Pacheco-Moises FP, Mireles-Ramírez MA, Bitzer-Quintero OK, Delgado-Lara DLC, Ramírez-Jirano LJ, Velázquez-Brizuela IE (2018) Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 49 (6): 391-398. doi:10.1016/ j.arcmed.2018.12.004.
244. Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, Zare Javid A (2019) The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: A double-blind, placebo-controlled trial. Inflammopharmacology 27 (1): 67-76. doi: 10.1007/s10787-018-0539-0.
245. Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C (2018). The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J. Pineal Res. 65 (4): e12521. doi: 10.1111/jpi.12521.
246. Ahmadi Z, Ashrafizadeh M (2020) Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol. 34 (1): 11-19. doi: 10.1111/fcp.12498.
247. Tan D-X, Reiter RJ (2022) Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci. 294:120368. doi: 10.1016/j.lfs.2022.120368.
248. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I (2001) Effects of melatonin treatment in septic newborns. Pediatr. Res. 50 (6): 756-760. doi: 10.1203/00006450-200112000-00021.
249. Hosseinzadeh MH, Goodarzi A, Malekan M, Ebrahimzadeh MA (2022) Melatonin increased hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase: A hypothesis for treating anaemia, ischaemia, and covid-19. Clin. Exp. Pharmacol. Physiol. 49 (6): 696-698. doi: 10.1111/1440-1681.13639.
250. Anderson G, Reiter R J (2020) COVID-19 pathophysiology: interactions of gut microbiome, melatonin, vitamin D, stress, kynurenine and the alpha 7 nicotinic receptor: Treatment implications. Melatonin Res. 3 (3): 322-345. doi: 10.32794/mr11250066.
251. Martín Giménez VM, Prado N, Diez E, Manucha W, Reiter RJ (2020) New proposal involving nanoformulated melatonin targeted to the mitochondria as a potential COVID-19 treatment. Nanomedicine (Lond) 15 (29): 2819-2821. doi: 10.2217/nnm-2020-0371.
252. Tan D-X, Hardeland R (2020) Estimated doses of melatonin for treating deadly virus infections: focus on COVID-19. Melatonin Res. 3: 276-296. doi:10.32794/mr11250062.
253. Josephson A, Kilic T, Michler JD (2021) Socioeconomic impacts of COVID-19 in low-income countries. Nat. Hum. Behav. 5 (5): 557-565. doi: 10.1038/s41562-021-01096-7.
254. Page KR, Doocy S, Reyna Ganteaume F, Castro JS, Spiegel P, Beyrer C (2019) Venezuela's public health crisis: a regional emergency. Lancet 393 (10177): 1254-1260. doi: 10.1016/S0140-6736(19)30344-7.
255. Chacín-Bonilla L (2017) Perfil epidemiológico de las enfermedades infecciosas en Venezuela. Invest. Clín. 58 (2): 103-105, 2017.
256. Chacín-Bonilla L (2021) SARS-CoV-2: Potential feco-oral transmission and implications on the spread and severity of COVID-19 in Venezuela. Invest. Clín. 62 (Suppl. 2): 58-68. doi: 10.22209/IC.v62s2a05.
257. Rick F, Odoke W, van den Hombergh J, Benzaken AS, Avelino-Silva VI (2022) Impact of coronavirus disease (COVID-19) on HIV testing and care provision across four continents. HIV Med. 23 (2): 169-177. doi: 10.1111/hiv. 13180.
258. Chacín-Bonilla L (2023) 
Las enfermedades tropicales desatendidas en Venezuela en la era de COVID-19. Invest. Clin. 64 (1): 1-3. doi: 10.54817/IC.v 64n1a00.
259. Gouda MA, AboShabaan HS, Abdelgawad AS, Abdel Wahed AS, A Abd El-Razik K, Elsaadawy Y, Abdel-Wahab AA, Hawash Y (2023) Association between breakthrough infection with COVID-19 and Toxoplasma gondii: a cross-sectional study. Sci. Rep. 13 (1): 17636. doi: 10.1038/s41598-023-44616-3.
260. Wen J, Shresta S (2019) Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr. Opin Immunol. 59: 1-8. doi: 10.1016/j.coi. 2019.02.
261. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17 (9): 1102-1108. doi: 10.1038/ni.3515.
262. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353 (6301): 823-826. doi: 10.1126/science.aaf8505.
263. Cheng YL, Chao CH, Lai YC, Hsieh KH, Wang JR, Wan SW, Huang HJ, Chuang YC, Chuang WJ, Yeh TM (2022) Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front. Immunol. 13: 941923. doi: 10.3389/fimmu.2022.941923.
264. Kaur U, Jethwani P, Mishra S, Dehade A, Yadav AK, Chakrabarti S, Chakrabarti SS (2023) Did COVID-19 or COVID-19 vaccines influence the patterns of dengue in 2021? An exploratory analysis of two observational studies from North India. Am. J. Trop. Med. Hyg. 109 (6): 1290-1297. doi: 10.4269/ajtmh. 23-0418.
265. Chacon N, Chacín-Bonilla L, Cesari IM (2021) Implications of helminth immunomodulation on COVID-19 co-infections. Life Res. 4 (3): 26. doi: 10.5338 8/life 2021-0502-309.
266. Chacín-Bonilla L, Chacon-Fonseca N, Rodriguez-Morales A (2021) Emerging issues in COVID-19 vac
Published
2024-04-19
How to Cite
[1]
Chacin-Bonilla, L. and Bonilla, E. 2024. Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2. Melatonin Research. 7, 1 (Apr. 2024), 47-83. DOI:https://doi.org/https://doi.org/10.32794/mr112500168.