Melatonin in yeast and fermented beverages: analytical tools for detection, physiological role and biosynthesis

Melatonin in yeast

  • Sara Muñiz-Calvo Food Biotechnology Department. Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
  • Ricardo Bisquert Food Biotechnology Department. Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
  • José M. Guillamón Food Biotechnology Department. Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
Keywords: tryptophan, serotonin, indoleamine, antioxidant, bioactive, fermentation, Saccharomyces cerevisiae, Melatonin

Abstract

The recently established relation between the metabolism of aromatic amino acids of yeast and the production of different bioactive molecules during fermentation opens up new and interesting research topics. Among these molecules, melatonin has drawn researchers’ attention in the last decade given its potential benefits for human health. This review summarizes melatonin production in fermented beverages, and conventional and current methods for detecting melatonin in yeast-derived samples. In addition, the role of melatonin in yeast is discussed and the biosynthetic pathway of melatonin is presented in Saccharomyces cerevisiae.

References

1. Bianco C, Imperlini E, Calogero R, et al. (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch. Microbiol. 185: 373–382. https://doi.org/10.1007/s00203-006-0103-y.
2. Prusty R, Grisafi P, Fink GR (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 101: 4153–4157. https://doi.org/10.1073/pnas.0400659101.
3. Arevalo-Villena M, Bartowsky EJ, Capone D, Sefton MA (2010) Production of indole by wine-associated microorganisms under oenological conditions. Food Microbiol. 27: 685–690. https://doi.org/10.1016/j.fm.2010.03.011.
4. Galano A, Tan DX, Reiter RJ (2018) Melatonin: A versatile protector against oxidative DNA damage. Molecules 23: 530. https://doi.org/10.3390/molecules23030530,
5. Karbownik M, Lewinski A, Reiter RJ (2001) Anticarcinogenic actions of melatonin which involve antioxidative processes: Comparison with other antioxidants. Int. J. Biochem. Cell Biol. 33: 735–753. https://doi.org/10.1016/S1357-2725(01)00059-0.
6. Sae-Teaw M, Johns J, Johns NP, Subongkot S (2013) Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res. 55: 58–64. https://doi.org/10.1111/jpi.12025.
7. Garrido M, Paredes SD, Cubero J, et al. (2010) Jerte valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J. Gerontol. A. Biol. Sci. Med. Sci. 65: 909–914. https://doi.org/10.1093/gerona/glq099.
8. Dubbels R, Rj R, Klenke E, et al. (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 18: 28–31. https://doi.org/10.1111/j.1600-079X.1995.tb00136.x.
9. Hattori A, Migitaka H, Iigo M, et al. (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 35: 627–634.
10. Iriti M, Rossoni M, Faoro F (2006) Melatonin content in grape:myth or panacea? J. Sci. Food. Agric. 86: 1432–1438. https://doi.org/10.1002/jsfa.
11. de la Puerta C, Carrascosa-Salmoral MP, García-Luna PP, et al. (2007) Melatonin is a phytochemical in olive oil. Food Chem. 104: 609–612. https://doi.org/10.1016/j.foodchem.2006.12.010.
12. Iriti M, Varoni EM (2015) Melatonin in Mediterranean diet, a new perspective. J. Sci. Food Agric. 95: 2355–2359. https://doi.org/10.1002/jsfa.7051.
13. Bhattacharjee A, Shastry CS, Saha S (2016) Overview of the occurrence of melatonin in medicinal plants with special reference to Crataeva nurvala Buch-Ham: isolation, purification, and characterization. In: Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health. Ravishankar G, Ramakrishna A, Eds. (CRC Press 2017), pp 247–270.
14. Meng X, Li Y, Li S, et al. (2017) Dietary sources and bioactivities of melatonin. Nutrients 9: 1–64. https://doi.org/10.3390/nu9040367.
15. Salehi B, Sharopov F, Fokou PVT, et al. (2019) Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells 8: 681. https://doi.org/10.3390/cells8070681.
16. Vitalini S, Gardana C, Zanzotto A, et al. (2011) From vineyard to glass: Agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J. Pineal Res. 51: 278–285. https://doi.org/10.1111/j.1600-079X.2011.00887.x.
17. Dawood MG, Mohamed EA (2016) Physiological role of melatonin in plants. In: Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health. Ravishankar G, Ramakrishna A, Eds. (CRC Press 2017), pp 121–148.
18. Hardeland R (2017) Taxon- and site-specific melatonin catabolism. Molecules 22: 2015. https://doi.org/10.3390/molecules22112015.
19. Tan DX, Reiter R, Manchester L, et al. (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2: 181–197. https://doi.org/10.2174/1568026023394443.
20. Byeon Y, Tan DX, Reiter RJ, Back K (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J. Pineal Res. 59: 448–454. https://doi.org/10.1111/jpi.12274.
21. Mercolini L, Saracino MA, Bugamelli F, et al. (2008) HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J. Sep. Sci. 31: 1007–1014. https://doi.org/10.1002/jssc.200700458.
22. Mercolini L, Mandrioli R, Raggi MA (2012) Content of melatonin and other antioxidants in grape-related foodstuffs: Measurement using a MEPS-HPLC-F method. J. Pineal Res. 53: 21–28. https://doi.org/10.1111/j.1600-079X.2011.00967.x.
23. Muszyńska B, Sułkowska-Ziaja K (2012) Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 132: 455–459. https://doi.org/10.1016/j.foodchem.2011.11.021.
24. Stege PW, Sombra LL, Messina G, et al. (2010) Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 31: 2242–2248. https://doi.org/10.1002/elps.200900782.
25. Muszyńska B, Ekiert H, Kwiecień I, et al. (2014) Comparative analysis of therapeutically important indole compounds in in vitro cultures of Hypericum perforatum cultivars by HPLC and TLC analysis coupled with densitometric detection. Nat. Prod. Commun. 9: 1437–1440. https://doi.org/10.1177/1934578x1400901009.
26. Fernández-Cruz E, Álvarez-Fernández MA, Valero E, et al. (2016) Validation of an analytical method to determine melatonin and compounds related to L-tryptophan metabolism using UHPLC/HRMS. Food Anal. Methods 9: 3327–3336. https://doi.org/10.1007/s12161-016-0529-z.
27. Fracassetti D, Vigentini I, Lo Faro AFF, et al. (2019) Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods. Foods 8: 99. https://doi.org/10.3390/foods8030099.
28. Kocadaǧli T, Yilmaz C, Gökmen V (2014) Determination of melatonin and its isomer in foods by liquid chromatography tandem mass spectrometry. Food Chem. 153: 151–156. https://doi.org/10.1016/j.foodchem.2013.12.036.
29. Gómez FJV, Raba J, Cerutti S, Silva MF (2012) Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle. J. Pineal Res. 52: 349–355. https://doi.org/10.1111/j.1600-079X.2011.00949.x.
30. Fernández-Pachón MS, Medina S, Herrero-Martín G, et al. (2014) Alcoholic fermentation induces melatonin synthesis in orange juice. J. Pineal Res. 56: 31–38. https://doi.org/10.1111/jpi.12093.
31. Paroni R, Dei Cas M, Rizzo J, et al. (2019) Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J. Food Compos. Anal. 82: 103227. https://doi.org/10.1016/j.jfca.2019.05.010.
32. Federico JVG, Hernández IG, Silva MF, Cerutti S (2016) Analytical trends for the determination of melatonin and precursors in plants. In: Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health. Ravishankar G, Ramakrishna A, Eds. (CRC Press 2017), pp 31–46.
33. García-Parrilla MC, Cantos E, Troncoso AM (2009) Analysis of melatonin in foods. J. Food Compos. Anal. 22: 177–183. https://doi.org/10.1016/j.jfca.2008.09.009.
34. Escrivá L, Manyes L, Barberà M, et al. (2016) Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry. J. Insect Physiol. 86: 48–53. https://doi.org/10.1016/j.jinsphys.2016.01.003.
35. Poeggeler B, Hardeland R (1994) Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: Solutions to the problem of methoxyindole destruction in non‐vertebrate material. J. Pineal Res. 17: 1–10. https://doi.org/10.1111/j.1600-079X.1994.tb00106.x.
36. Antonia Álvarez-Fernández M, Fernández-Cruz E, Valero E, et al. (2019) Efficiency of three intracellular extraction methods in the determination of metabolites related to tryptophan and tyrosine in winemaking yeast’s metabolism by LC-HRMS. Food Chem. 297: 124924. https://doi.org/10.1016/j.foodchem.2019.05.198.
37. Vitalini S, Cas MD, Rubino FM, et al. (2020) LC-MS/MS-based profiling of tryptophan-related metabolites in healthy plant foods. Molecules 25: 311. https://doi.org/10.3390/molecules25020311.
38. Muñiz-Calvo S, Guillamón JM, Domínguez I, Doménech-Carbó A (2017) Detecting and monitoring the production of melatonin and other related indole compounds in different Saccharomyces strains by solid-state electrochemical techniques. Food Anal. Methods 10: 1408–1418. https://doi.org/10.1007/s12161-016-0699-8.
39. Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, et al. (2011) Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 24: 603–608. https://doi.org/10.1016/j.jfca.2010.12.009.
40. Shaw WM, Yamauchi H, Mead J, et al. (2019) Engineering a model cell for rational tuning of GPCR signaling. Cell 177: 782-796. https://doi.org/10.1016/j.cell.2019.02.023.
41. Morcillo-Parra MÁ, Beltran G, Mas A, Torija M-J (2019) Determination of melatonin by a whole cell bioassay in fermented beverages. Sci. Rep. 9: 9120. https://doi.org/10.1038/s41598-019-45645-7.
42. Maldonado MD, Moreno H, Calvo JR (2009) Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin. Nutr. 28: 188–191. https://doi.org/10.1016/j.clnu.2009.02.001.
43. Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, et al. (2011) Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 126: 1608–1613. https://doi.org/10.1016/j.foodchem.2010.12.038.
44. Mena P, Gil-Izquierdo Á, Moreno DA, et al. (2012) Assessment of the melatonin production in pomegranate wines. L. W. T. - Food Sci. Technol. 47: 13–18. https://doi.org/10.1016/j.lwt.2012.01.009.
45. Vitalini S, Gardana C, Simonetti P, et al. (2013) Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J. Pineal Res. 54: 322–333. https://doi.org/10.1111/jpi.12028.
46. García-Moreno H, Calvo JR, Maldonado MD (2013) High levels of melatonin generated during the brewing process. J. Pineal Res. 55: 26–30. https://doi.org/10.1111/jpi.12005.
47. Wang C, Yin LY, Shi XY, et al. (2016) Effect of cultivar, temperature, and environmental conditions on the dynamic change of melatonin in mulberry fruit development and wine fermentation. J. Food Sci. 81: 958–967. https://doi.org/10.1111/1750-3841.13263.
48. Marhuenda J, Medina S, Martínez-Hernández P, et al. (2016) Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers. Food Funct. 7: 4781–4796. https://doi.org/10.1039/c6fo01246a.
49. Fernández-Cruz E, Cerezo AB, Cantos-Villar E, et al. (2018) Time course of L-tryptophan metabolites when fermenting natural grape musts: effect of inoculation treatments and cultivar on the occurrence of melatonin and related indolic compounds. Aust. J. Grape Wine Res. 25: 92–100. https://doi.org/10.1111/ajgw.12369.
50. Maldonado MD, Moreno H, Calvo JR (2009) Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin. Nutr. 28: 188–191. https://doi.org/10.1016/j.clnu.2009.02.001.
51. Varoni EM, Paroni R, Antognetti J, et al. (2018) Effect of red wine intake on serum and salivary melatonin levels: A randomized, placebo-controlled clinical trial. Molecules 23: 1–10. https://doi.org/10.3390/molecules23102474.
52. Renaud S, Lorgeril M De (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339: 1523–1526. https://doi.org/10.1016/0140-6736(92)91277-F.
53. Iriti M, Varoni EM, Vitalini S (2010) Melatonin in traditional Mediterranean diets. J. Pineal Res. 49: 101–105. https://doi.org/10.1111/j.1600-079X.2010.00777.x.
54. Fernández-Mar MI, Mateos R, García-Parrilla MC, et al. (2012) Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 130: 797–813. https://doi.org/10.1016/j.foodchem.2011.08.023.
55. Iriti M, Varoni EM (2016) The good health of bacchus: melatonin in grapes, the unveiled myth. L. W. T. - Food Sci. Technol. 65: 758–761. https://doi.org/10.1016/j.lwt.2015.09.010.
56. Seabra MLV, Bignotto M, Pinto LR Jr, Tufik S (2000) Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J. Pineal Res. 29: 193–200. https://doi.org/10.1034/j.1600-0633.2002.290401.x.
57. Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK (2016) Melatonin in plants and plant culture systems: Variability, stability and efficient quantification. Front Plant. Sci. 7: 1721. https://doi.org/10.3389/fpls.2016.01721.
58. Sprenger J, Hardeland R, Fuhrberg B (1999) Melatonin and other 5-methoxylated indoles in yeast: presence in high concentrations and dependence on tryptophan availability. Cytologia 64: 209–213. https://doi.org/https://doi.org/10.1508/cytologia.64.209.
59. Fernández-Cruz E, Álvarez-Fernández MA, Valero E, et al. (2017) Melatonin and derived L-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. Food Chem. 217: 431–437. https://doi.org/10.1016/j.foodchem.2016.08.020.
60. Rodriguez-Naranjo MI, Torija MJ, Mas A, et al. (2012) Production of melatonin by Saccharomyces strains under growth and fermentation conditions. J. Pineal Res. 53: 219–224. https://doi.org/10.1111/j.1600-079X.2012.00990.x.
61. Vilela A (2019) The importance of yeasts on fermentation quality and human health-promoting compounds. Fermentation 5: 46. https://doi.org/10.3390/fermentation5020046.
62. Fernández-Cruz E, González B, Muñiz-Calvo S, et al. (2019) Intracellular biosynthesis of melatonin and other indolic compounds in Saccharomyces and non-Saccharomyces wine yeasts. Eur. Food Res.Technol.245: 1553–1560. https://doi.org/10.1007/s00217-019-03257-5.
63. Fracassetti D, Francesco Lo Faro AF, Moiola S, et al. (2020) Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale. Food Microbiol. 86: 103265. https://doi.org/10.1016/j.fm.2019.103265.
64. Tan DX, Hardeland R, Manchester LC, et al. (2012) Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J. Pineal Res. 53: 113–121. https://doi.org/10.1111/j.1600-079x.2012.00979.x.
65. Yilmaz C, Kocadaǧli T, Gökmen V (2014) Formation of melatonin and its isomer during bread dough fermentation and effect of baking. J. Agric. Food Chem. 62: 2900–2905. https://doi.org/10.1021/jf500294b.
66. Gardana C, Iriti M, Stuknytė M, et al. (2014) ‘Melatonin isomer’ in wine is not an isomer of the melatonin but tryptophan-ethylester. J. Pineal Res. 57: 435–441. https://doi.org/10.1111/jpi.12183.
67. Vigentini I, Gardana C, Fracassetti D, et al. (2015) Yeast contribution to melatonin, melatonin isomers and tryptophan ethyl ester during alcoholic fermentation of grape musts. J. Pineal Res. 58: 388–396. https://doi.org/10.1111/jpi.12223.
68. Tudela R, Ribas-agust A, Buxaderas S, et al. (2016) Ultrahigh-performance liquid chromatography (UHPLC) − tandem mass spectrometry (MS/MS) quantification of nine target indoles in sparkling wines. J. Agric. Food Chem. 64: 4772–4776. https://doi.org/10.1021/acs.jafc.6b01254.
69. Tan DX, Zheng X, Kong J, et al. (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int. J. Mol. Sci. 15: 15858–15890. https://doi.org/10.3390/ijms150915858.
70. Fathizadeh H, Mirzaei H, Asemi Z (2019) Melatonin: An anti-tumor agent for osteosarcoma. Cancer Cell Int. 19: 1–8. https://doi.org/10.1186/s12935-019-1044-2.
71. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, et al. (2011) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 17: 4462–4481. https://doi.org/10.2174/092986710794183015.
72. Hardeland R, Balzer I, Poeggeler B, et al. (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J. Pineal Res. 18: 104–111. https://doi.org/10.1111/j.1600-079X.1995.tb00147.x.
73. Eelderink-Chen Z, Mazzotta G, Sturre M, et al. (2010) A circadian clock in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 107: 2043–2047. https://doi.org/Doi 10.1073/Pnas.0907902107.
74. Bisquert R, Muñiz-Calvo S, Guillamón JM (2018) Protective role of intracellular melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae. Front. Microbiol. 9: 318. https://doi.org/10.3389/fmicb.2018.00318.
75. Vázquez J, Grillitsch K, Daum G, et al. (2018) Melatonin minimizes the impact of oxidative stress induced by hydrogen peroxide in Saccharomyces and Non-conventional yeast. Front. Microbiol. 9: 1–12. https://doi.org/10.3389/fmicb.2018.01933.
76. Vázquez J, González B, Sempere V, et al. (2017) Melatonin reduces oxidative stress damage induced by hydrogen peroxide in Saccharomyces cerevisiae. Front. Microbiol. 8: 1–14. https://doi.org/10.3389/fmicb.2017.01066.
77. Zampol MA, Barros MH (2018) Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione. Yeast 35: 281–290. https://doi.org/10.1002/yea.3296.
78. Morcillo-parra MÁ, Valera MJ, Beltran G, Mas A (2019) Glycolytic proteins interact with intracellular melatonin in Saccharomyces cerevisiae. Front. Microbiol. 10: 2424. https://doi.org/10.3389/fmicb.2019.02424.
79. Álvarez-Fernández MA, Fernández-Cruz E, Cantos-Villar E, et al. (2018) Determination of hydroxytyrosol produced by winemaking yeasts during alcoholic fermentation using a validated UHPLC–HRMS method. Food Chem. 242: 345–351. https://doi.org/10.1016/j.foodchem.2017.09.072.
80. Hevia D, González-Menéndez P, Quiros-González I, et al. (2015) Melatonin uptake through glucose transporters: A new target for melatonin inhibition of cancer. J. Pineal Res. 58: 234–250. https://doi.org/10.1111/jpi.12210.
81. Valera MJ, Morcillo-Parra MÁ, Zagórska I, et al. (2019) Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Int. J. Food Microbiol. 289: 174–181. https://doi.org/10.1016/j.ijfoodmicro.2018.09.013.
82. Axelrod J, Weissbach H (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131: 1312. https://doi.org/doi: 10.1126/science.131.3409.1312.
83. Liu B, Sutton A, Sternglanz R (2005) A yeast polyamine acetyltransferase. J. Biol. Chem. 280: 16659–16664. https://doi.org/10.1074/jbc.M414008200.
84. Ganguly S, Mummaneni P, Steinbach PJ, et al. (2001) Characterization of the Saccharomyces cerevisiae homolog of the melatonin rhythm enzyme Arylalkylamine N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 276: 47239–47247. https://doi.org/10.1074/jbc.M107222200.
85. Tan DX, Hardeland R, Back K, et al. (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61: 27–40. https://doi.org/10.1111/jpi.12336.
86. Muñiz-Calvo S, Bisquert R, Fernández-Cruz E, et al. (2019) Deciphering the melatonin metabolism in Saccharomyces cerevisiae by the bioconversion of related metabolites. J. Pineal Res. 66: 1–9. https://doi.org/10.1111/jpi.12554.
87. Sprenger J, Hardeland R (1999) Melatonin and 5-methoxytryptamine in yeast: requirement of precursors. In: Studies on Antioxidants and Their Metabolites. Hardeland R, Ed. (Cuvillier 1999), pp 191–198.
88. Lee K, Lee HY, Back K (2018) Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N- acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J. Pineal Res. 64: e12460. https://doi.org/doi: 10.1111/jpi.12460.
89. Leone RM, Silman RE (1984) Melatonin can be differentially metabolized in the rat to produce N-acetylserotonin in addition to 6-hydroxymelatonin. Endocrinology 114: 1825–1832. https://doi.org/10.1210/endo-114-5-1825.
90. Young IM, Leone RM, Francis P, et al. (1985) Melatonin is metabolized to N-acetyl serotonin and 6-Hydroxymelatonin in man. J. Clin. Endocrinol. Metab. 60: 114–119. https://doi.org/10.1210/jcem-60-1-114.
91. Álvarez-Fernández MA, Fernández-Cruz E, García-Parrilla MC, et al. (2019) Saccharomyces cerevisiae and Torulaspora delbrueckii intra- and extra-cellular aromatic amino acids metabolism. J. Agric. Food Chem. 67:7942–7953. https://doi.org/10.1021/acs.jafc.9b01844.
92. Johns NP, Johns J, Porasuphatana S, et al. (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J. Agric. Food Chem. 61: 913–919. https://doi.org/10.1021/jf300359a.
93. Huccetogullari D, Luo ZW, Lee SY (2019) Metabolic engineering of microorganisms for production of aromatic compounds. Microb. Cell Fact. 18: 1–29. https://doi.org/10.1186/s12934-019-1090-4.
Published
2020-06-01
How to Cite
[1]
Muñiz-Calvo, S., Bisquert, R. and Guillamón, J.M. 2020. Melatonin in yeast and fermented beverages: analytical tools for detection, physiological role and biosynthesis. Melatonin Research. 3, 2 (Jun. 2020), 144-160. DOI:https://doi.org/https://doi.org/10.32794/mr11250053.